New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor (original) (raw)
- Letter
- Published: 06 October 1994
Nature volume 371, pages 519–523 (1994)Cite this article
- 1717 Accesses
- 857 Citations
- 6 Altmetric
- Metrics details
Abstract
THE adenosine-5′-triphosphate (ATP) molecule is an extracellular messenger in neural and non-neural tissues, where it activates several cell-surface-receptor subtypes, including G-protein-coupled receptors and ligand-gated ion channels1. ATP-gated channels (termed P2X receptors) have been characterized on smooth muscle cells and autonomic and sensory neurons, where they mediate membrane depolarization and, in some cases, Ca2+ entry2. P2x receptors are functionally heterogeneous, but resemble acetylcholine-and serotonin-gated channels with respect to ion selectivity and kinetic parameters of channel gating. We report here that despite such close functional similarities, the deduced sequence of a cloned P2x receptor predicts an unusual subunit structure resembling voltage-insensitive cation channels. Thus, the P2x receptor provides a striking example of convergent evolution, whereby proteins have been fashioned with similar functional properties from subunits having very different structural characteristics. There is sequence similarity between the ATP receptor and RP-2, a gene activated in thymocytes undergoing programmed cell death3. RP-2 may encode a receptor for ATP or another metabolite released during apoptosis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Burnstock, G. Ann. N.Y. Acad. Sci. 603, 1–18 (1990).
Article CAS ADS Google Scholar - Bean, B. P. Trends pharmac. Sci. 13, 87–90 (1992).
Article CAS Google Scholar - Owens, G. P., Hahn, W. E. & Cohen, J. J. Molec. cell. Biol. 11, 4177–4188 (1991).
Article CAS Google Scholar - Nakazawa, K., Fujimori, K., Takanaka, A. & Inoue, K. J. Physiol. 428, 257–272 (1990).
Article CAS Google Scholar - Nakazawa, K., Inoue, K., Fujimori, K. & Takanaka, A. Neurosci. Lett. 119, 5–8 (1990).
Article CAS Google Scholar - Majid, M. A., Okajima, F. & Kondo, Y. Biochim. biophys. Acta 1136, 283–289 (1992).
Article CAS Google Scholar - Nakazawa, K. & Hess, P. J. gen. Physiol. 101, 377–392 (1993).
Article CAS Google Scholar - Fieber, L. A. & Adams, D. J. J. Physiol. 434, 239–256 (1991).
Article CAS Google Scholar - Cloues, R., Jones, S. & Brown, D. A. Pflug. Archiv. 424, 152–158 (1993).
Article CAS Google Scholar - Friel, D. D. J. Physiol. 401, 361–380 (1988).
Article CAS Google Scholar - Edwards, F. A., Gibb, A. J. & Colquhoun, D. Nature 359, 144–147 (1992).
Article CAS ADS Google Scholar - Evans, R. J., Derkach, V. & Surprenant, A. Nature 357, 503–505 (1992).
Article CAS ADS Google Scholar - Silinsky, E. M., Gerzanich, V. & Vanner, S. M. Br. J. Pharmac. 106, 762–763 (1993).
Article Google Scholar - Benham, C. D. & Tsien, R. W. Nature 328, 275–278 (1987).
Article CAS ADS Google Scholar - Nakazawa, K., Inoue, K., Fujimori, K. & Takanaka, A. Pflug. Archiv. 418, 214–219 (1991).
Article CAS Google Scholar - Li, C., Peoples, R. W., Li, Z. & Weight, F. F. Proc. natn. Acad. Sci. U.S.A. 90, 8264–8267 (1993).
Article CAS ADS Google Scholar - Canessa, C. M. et al. Nature 367, 463–467 (1994).
Article CAS ADS Google Scholar - Ho, K. et al. Nature 362, 31–38 (1993).
Article CAS ADS Google Scholar - Hong, K. & Driscoll, M. Nature 367, 470–473 (1994).
Article CAS ADS Google Scholar - Huang, M. & Chalfie, M. Nature 367, 467–470 (1994).
Article CAS ADS Google Scholar - Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Nature 362, 127–133 (1993).
Article CAS ADS Google Scholar - Suzuki, M. et al. Nature 367, 642–645 (1994).
Article CAS ADS Google Scholar - Unwin, N. Cell. 72, (suppl.) 31–41 (1993).
Article Google Scholar - Saraste, M., Sibbald, P. R. & Wittinghofer, A. Trends biochem. Sci. 15, 430–434 (1990).
Article Google Scholar - Li, M., Unwin, N., Staufer, K. A., Jan, Y. N. & Jan, L. Y. Curr. Biol. 4, 110–115 (1994).
Article CAS Google Scholar - Thomas, S. A. & Hulme, R. I. J. gen. Physiol. 95, 569–590 (1990).
Article CAS Google Scholar - Friel, D. D. & Bean, B. P. Pflug. Archiv. 415, 651–657 (1990).
Article CAS Google Scholar - Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Science 254, 432–437 (1991).
Article CAS ADS Google Scholar - Tecott, L. H., Maricq, A. V. & Julius, D. Proc. natn. Acad. Sci. U.S.A. 90, 1430–1434 (1993).
Article CAS ADS Google Scholar
Author information
Authors and Affiliations
- Department of Pharmacology and Silvio Conte Center for Neuroscience Research, Programs in Cell Biology and Neuroscience, University of California, San Francisco, California, 94143-0450, USA
Anthony J. Brake, Michael J. Wagenbach & David Julius
Authors
- Anthony J. Brake
You can also search for this author inPubMed Google Scholar - Michael J. Wagenbach
You can also search for this author inPubMed Google Scholar - David Julius
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Brake, A., Wagenbach, M. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.Nature 371, 519–523 (1994). https://doi.org/10.1038/371519a0
- Received: 24 June 1994
- Accepted: 31 August 1994
- Issue Date: 06 October 1994
- DOI: https://doi.org/10.1038/371519a0