New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor (original) (raw)

Nature volume 371, pages 519–523 (1994)Cite this article

Abstract

THE adenosine-5′-triphosphate (ATP) molecule is an extracellular messenger in neural and non-neural tissues, where it activates several cell-surface-receptor subtypes, including G-protein-coupled receptors and ligand-gated ion channels1. ATP-gated channels (termed P2X receptors) have been characterized on smooth muscle cells and autonomic and sensory neurons, where they mediate membrane depolarization and, in some cases, Ca2+ entry2. P2x receptors are functionally heterogeneous, but resemble acetylcholine-and serotonin-gated channels with respect to ion selectivity and kinetic parameters of channel gating. We report here that despite such close functional similarities, the deduced sequence of a cloned P2x receptor predicts an unusual subunit structure resembling voltage-insensitive cation channels. Thus, the P2x receptor provides a striking example of convergent evolution, whereby proteins have been fashioned with similar functional properties from subunits having very different structural characteristics. There is sequence similarity between the ATP receptor and RP-2, a gene activated in thymocytes undergoing programmed cell death3. RP-2 may encode a receptor for ATP or another metabolite released during apoptosis.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Burnstock, G. Ann. N.Y. Acad. Sci. 603, 1–18 (1990).
    Article CAS ADS Google Scholar
  2. Bean, B. P. Trends pharmac. Sci. 13, 87–90 (1992).
    Article CAS Google Scholar
  3. Owens, G. P., Hahn, W. E. & Cohen, J. J. Molec. cell. Biol. 11, 4177–4188 (1991).
    Article CAS Google Scholar
  4. Nakazawa, K., Fujimori, K., Takanaka, A. & Inoue, K. J. Physiol. 428, 257–272 (1990).
    Article CAS Google Scholar
  5. Nakazawa, K., Inoue, K., Fujimori, K. & Takanaka, A. Neurosci. Lett. 119, 5–8 (1990).
    Article CAS Google Scholar
  6. Majid, M. A., Okajima, F. & Kondo, Y. Biochim. biophys. Acta 1136, 283–289 (1992).
    Article CAS Google Scholar
  7. Nakazawa, K. & Hess, P. J. gen. Physiol. 101, 377–392 (1993).
    Article CAS Google Scholar
  8. Fieber, L. A. & Adams, D. J. J. Physiol. 434, 239–256 (1991).
    Article CAS Google Scholar
  9. Cloues, R., Jones, S. & Brown, D. A. Pflug. Archiv. 424, 152–158 (1993).
    Article CAS Google Scholar
  10. Friel, D. D. J. Physiol. 401, 361–380 (1988).
    Article CAS Google Scholar
  11. Edwards, F. A., Gibb, A. J. & Colquhoun, D. Nature 359, 144–147 (1992).
    Article CAS ADS Google Scholar
  12. Evans, R. J., Derkach, V. & Surprenant, A. Nature 357, 503–505 (1992).
    Article CAS ADS Google Scholar
  13. Silinsky, E. M., Gerzanich, V. & Vanner, S. M. Br. J. Pharmac. 106, 762–763 (1993).
    Article Google Scholar
  14. Benham, C. D. & Tsien, R. W. Nature 328, 275–278 (1987).
    Article CAS ADS Google Scholar
  15. Nakazawa, K., Inoue, K., Fujimori, K. & Takanaka, A. Pflug. Archiv. 418, 214–219 (1991).
    Article CAS Google Scholar
  16. Li, C., Peoples, R. W., Li, Z. & Weight, F. F. Proc. natn. Acad. Sci. U.S.A. 90, 8264–8267 (1993).
    Article CAS ADS Google Scholar
  17. Canessa, C. M. et al. Nature 367, 463–467 (1994).
    Article CAS ADS Google Scholar
  18. Ho, K. et al. Nature 362, 31–38 (1993).
    Article CAS ADS Google Scholar
  19. Hong, K. & Driscoll, M. Nature 367, 470–473 (1994).
    Article CAS ADS Google Scholar
  20. Huang, M. & Chalfie, M. Nature 367, 467–470 (1994).
    Article CAS ADS Google Scholar
  21. Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Nature 362, 127–133 (1993).
    Article CAS ADS Google Scholar
  22. Suzuki, M. et al. Nature 367, 642–645 (1994).
    Article CAS ADS Google Scholar
  23. Unwin, N. Cell. 72, (suppl.) 31–41 (1993).
    Article Google Scholar
  24. Saraste, M., Sibbald, P. R. & Wittinghofer, A. Trends biochem. Sci. 15, 430–434 (1990).
    Article Google Scholar
  25. Li, M., Unwin, N., Staufer, K. A., Jan, Y. N. & Jan, L. Y. Curr. Biol. 4, 110–115 (1994).
    Article CAS Google Scholar
  26. Thomas, S. A. & Hulme, R. I. J. gen. Physiol. 95, 569–590 (1990).
    Article CAS Google Scholar
  27. Friel, D. D. & Bean, B. P. Pflug. Archiv. 415, 651–657 (1990).
    Article CAS Google Scholar
  28. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Science 254, 432–437 (1991).
    Article CAS ADS Google Scholar
  29. Tecott, L. H., Maricq, A. V. & Julius, D. Proc. natn. Acad. Sci. U.S.A. 90, 1430–1434 (1993).
    Article CAS ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology and Silvio Conte Center for Neuroscience Research, Programs in Cell Biology and Neuroscience, University of California, San Francisco, California, 94143-0450, USA
    Anthony J. Brake, Michael J. Wagenbach & David Julius

Authors

  1. Anthony J. Brake
    You can also search for this author inPubMed Google Scholar
  2. Michael J. Wagenbach
    You can also search for this author inPubMed Google Scholar
  3. David Julius
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Brake, A., Wagenbach, M. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.Nature 371, 519–523 (1994). https://doi.org/10.1038/371519a0

Download citation