Molecular mechanism of cyclic-nucleotide-gated channel activation (original) (raw)
- Letter
- Published: 24 November 1994
Nature volume 372, pages 369–374 (1994)Cite this article
- 442 Accesses
- 3 Altmetric
- Metrics details
Abstract
STUDIES on the activation of ligand- and voltage-gated ion channels have identified regions involved in both ligand binding1 and voltage sensing2, but relatively little is known about how such domains are coupled to channel opening. Here we investigate the structural basis for the activation of cyclic-nucleotide-gated channels, which are directly opened by cytoplasmic cyclic nucleotides3,4 but are structurally homologous to voltage-gated channels5–7. By constructing chimaeras between cyclic-nucleotide-gated channels cloned from bovine retinal photoreceptors8 and catfish olfactory neurons7, we identify two distinct domains that are important for ligand binding and channel gating. A putative α-helix in the carboxy-terminal binding domain determines the selectivity of the channel for activation by cGMP relative to cAMP. A domain in the amino-terminal region determines the ease with which channels open and thus influences agonist efficacy. We propose that channel opening is coupled to an allosteric conformational change in the binding site which enhances agonist binding. Thus, cyclic nucleotides activate the channel by binding tightly to the open state and stabilizing it.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Karlin, A. Curr. Opin. Neurobiol. 2, 299–309 (1993).
Article Google Scholar - Stuhmer, W. et al. Nature 339, 597–603 (1989).
Article ADS CAS Google Scholar - Fesenko, E. E., Kaoesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).
Article ADS CAS Google Scholar - Nakamura, T. & Gold, G. H. Nature 325, 342–344 (1987).
Article Google Scholar - Jan, L. Y. & Jan, Y. N. Nature 345, 672 (1990).
Article ADS CAS Google Scholar - Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R. & Ganetzky, B. Science 254, 730 (1991).
Article ADS CAS Google Scholar - Goulding, E. H. et al. Neuron 8, 45–58 (1992).
Article CAS Google Scholar - Kaupp, U. B. et al. Nature 342, 762–766 (1989).
Article ADS CAS Google Scholar - Castillo, J. & Katz, B. Proc. R. Soc. B 146, 369–381 (1957).
ADS Google Scholar - Fersht, A. Enzyme Structure and Mechanism 98–106, 311–317 (Freeman, New York, 1985).
Google Scholar - Avis, J. M. & Fersht, A. R. Biochemistry 32, 5321–5326 (1993).
Article CAS Google Scholar - Catterall, W. A. Science 243, 236–237 (1989).
Article ADS CAS Google Scholar - Jackson, M. B. Biophys. J. 63, 1443–1444 (1992).
Article ADS CAS Google Scholar - Weber, I. T. & Steitz, T. A. J. molec Biol. 198, 311–326 (1987).
Article CAS Google Scholar - Shabb, J. M. & Corbin, J. D. J. biol. Chem. 267, 5723–5726 (1992).
CAS PubMed Google Scholar - Miller, C. Science 252, 1092–1096 (1991).
Article ADS CAS Google Scholar - Monod, J., Wyman, J. & Changeux, J.-P. J. molec. Biol. 12, 88–118 (1965).
Article CAS Google Scholar - MacKinnon, R. Nature 350, 232–235 (1991).
Article ADS CAS Google Scholar - Li, M., Jan, Y. N. & Jan, L. Y. Science 257, 1225–1230 (1992).
Article ADS CAS Google Scholar - Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. Neuron 11, 67–76 (1993).
Article CAS Google Scholar - Babila, T. et al. Neuron 12, 615–626 (1994).
Article CAS Google Scholar - Perutz, M. F. Nature 228, 726–739 (1990).
Article ADS Google Scholar - Unwin, P. N. T. & Ennis, P. D. Nature 307, 609–613 (1984).
Article ADS CAS Google Scholar - Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Nature 364, 61–64 (1993).
Article ADS CAS Google Scholar - Zagotta, W. N., Hoshi, Y. & Aldrich, R. W. Science 250, 568–571 (1990).
Article ADS CAS Google Scholar - Kramer, R. H., Goulding, E. & Siegelbaum, S. A. Neuron 12, 655–662 (1994).
Article CAS Google Scholar - Liman, E. R., Tytgat, J. & Hess, P. Neuron 9, 861–871 (1992).
Article CAS Google Scholar - Takio, K. et al. Biochemistry 23, 4207–4218 (1984).
Article CAS Google Scholar - Titani, K. et al. Biochemistry 23, 4193–4199 (1984).
Article CAS Google Scholar - Skoog, D. A. & West, D. M. Fundamentals of Analytical Chemistry 75–80 (CBS College, New York, 1982).
Google Scholar
Author information
Authors and Affiliations
- Center for Neurobiology and Behavior, Departments of Physiology and Pharmacology, Howard Hughes Medical Institute, Columbia University, 722 W. 168th Street, New York, New York, 10032, USA
Evan H. Goulding, Gareth R. Tibbs & Steven A. Siegelbaum
Authors
- Evan H. Goulding
You can also search for this author inPubMed Google Scholar - Gareth R. Tibbs
You can also search for this author inPubMed Google Scholar - Steven A. Siegelbaum
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Goulding, E., Tibbs, G. & Siegelbaum, S. Molecular mechanism of cyclic-nucleotide-gated channel activation.Nature 372, 369–374 (1994). https://doi.org/10.1038/372369a0
- Received: 20 June 1994
- Accepted: 26 October 1994
- Issue Date: 24 November 1994
- DOI: https://doi.org/10.1038/372369a0
This article is cited by
Fast functional mapping of ligand-gated ion channels
- Ralf Schmauder
- Thomas Eick
- Klaus Benndorf
Communications Biology (2023)
Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging
- Suruchi Sharma
- Sandhya S. Visweswariah
Journal of the Indian Institute of Science (2017)
Quantifying the cooperative subunit action in a multimeric membrane receptor
- Nisa Wongsamitkul
- Vasilica Nache
- Klaus Benndorf
Scientific Reports (2016)
Hysteresis of ligand binding in CNGA2 ion channels
- Vasilica Nache
- Thomas Eick
- Klaus Benndorf
Nature Communications (2013)
How subunits cooperate in cAMP-induced activation of homotetrameric HCN2 channels
- Jana Kusch
- Susanne Thon
- Klaus Benndorf
Nature Chemical Biology (2012)