Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes (original) (raw)

Nature volume 373, pages 350–353 (1995)Cite this article

Abstract

T LYMPHOCYTES of the α/β T-cell receptor (TCR) lineage mature in the thymus, where they undergo a series of differentiation, expansion and selection events1–7. For normal T-cell ontogeny to occur, thymocytes must interact physically with cortical and medullary thymic stroma cells8–10. In parallel, interactions of the thymic stromal cells with TCR-positive thymocytes are necessary for the development of the thymic medulla10–12. Comparable requirements for the differentiation of the cortex have not been defined, however. Here we analyse mutant mouse strains to assess the function of early prothymocytes in the induction of the thymic cortex. We find that animals with a developmental block at the earliest stage of T-lineage commitment lack a functional thymic cortex. This abnormality could be corrected in fetal but not adult animals by transplantation of either fetal or adult wild-type haematopoietic stem cells. Thus a developmentally restricted interaction of fetal stromal cells with early prothymocytes is required for the induction of a cortical microenvironment. In addition, a normal thymic architecture is necessary for sustained T-cell ontogeny.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Ikuta, K., Uchida, N., Friedman, J. & Weissman, I. L. A. Rev. Immun. 10, 759–783 (1992).
    Article CAS Google Scholar
  2. Boyd, R. L. & Hugo, P. Immun. Today 12, 71–79 (1991).
    Article CAS Google Scholar
  3. Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. Semin. Immun. 2, 3–12 (1990).
    CAS Google Scholar
  4. Scollay, R. Curr. Opin. Immun. 3, 204–209 (1991).
    Article CAS Google Scholar
  5. Boyd, R. L. et al. Immun. Today 14, 445–459 (1993).
    Article CAS Google Scholar
  6. von Boehmer, H. Cell 76, 219–228 (1994).
    Article CAS Google Scholar
  7. Nossal, G. J. V. Cell 76, 229–239 (1994).
    Article CAS Google Scholar
  8. Jenkinson, E. J. & Owen, J. J. T. Semin. Immun. 2, 51–60 (1990).
    CAS Google Scholar
  9. van Ewijk, W. A. Rev. Immun. 9, 591–615 (1991).
    Article CAS Google Scholar
  10. Ritter, M. A. & Boyd, R. L. Immun. Today 14, 462–469 (1993).
    Article CAS Google Scholar
  11. van Ewijk, W., Shores, E. W. & Singer, A. Immun. Today 15, 214–217 (1994).
    Article CAS Google Scholar
  12. Shores, E. W., Van Ewijk, W. & Singer, A. Eur. J. Immun. 21, 1657–1661 (1991).
    Article CAS Google Scholar
  13. Wang, B. et al. Proc. natn. Acad. Sci. U.S.A. 91, 9402–9406 (1994).
    Article ADS CAS Google Scholar
  14. Shinkai, Y. et al. Science 259, 822–825 (1993).
    Article ADS CAS Google Scholar
  15. Godfrey, D. I. & Zlotnik, A. Immun. Today 14, 547–553 (1993).
    Article CAS Google Scholar
  16. Mombaerts, P. et al. Cell 68, 869–877 (1992).
    Article CAS Google Scholar
  17. Godfrey, D. I. et al. J. Immun. 152, 4783–4792 (1994).
    CAS PubMed Google Scholar
  18. van Vliet, E., Melis, M. & Van Ewijk, W. Eur. J. Immun. 14, 524–532 (1984).
    Article CAS Google Scholar
  19. van Ewijk, W. Am. J. Anat. 170, 311–330 (1984).
    Article CAS Google Scholar
  20. Budd, R. C. et al. J. Immun. 138, 3120–3129 (1987).
    CAS PubMed Google Scholar
  21. Yokoyama, W. et al. J. Immun. 141, 369–376 (1988).
    CAS PubMed Google Scholar
  22. Bradley, L. M., Atkins, G. G. & Swain, S. L. J. Immun. 148, 324–331 (1992).
    CAS Google Scholar
  23. Roberts, R. The Mouse, its Reproduction and Development 253–259 (Oxford Univ. Press, Oxford, UK, 1990).
    Google Scholar
  24. van Vliet, E. et al. Eur. J. Immun. 15, 677–681 (1985).
    Article Google Scholar
  25. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. J. Immun. 150, 4244–4252 (1993).
    CAS PubMed Google Scholar
  26. Nezelof, C. Histopathology 21, 499–511 (1992).
    Article CAS Google Scholar
  27. Wang, B. et al. Int. Immun. (in the press).

Download references

Author information

Authors and Affiliations

  1. Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
    Georg A. Holländer & Steven J. Burakoff
  2. Division of Immunology, Beth Israel Hospital, Boston, Massachusetts, 02115, USA
    Baoping Wang & Cox Terhorst
  3. The Center for Blood Research, Harvard Medical School, Boston, Massachusetts, 02115, USA
    Aliki Nichogiannopoulou & Jose-Carlos Gutierrez-Ramos
  4. Department of Immunology, Erasmus University, DR 3000, Rotterdam, The Netherlands
    Peter Paul Platenburg & Willem van Ewijk

Authors

  1. Georg A. Holländer
    You can also search for this author inPubMed Google Scholar
  2. Baoping Wang
    You can also search for this author inPubMed Google Scholar
  3. Aliki Nichogiannopoulou
    You can also search for this author inPubMed Google Scholar
  4. Peter Paul Platenburg
    You can also search for this author inPubMed Google Scholar
  5. Willem van Ewijk
    You can also search for this author inPubMed Google Scholar
  6. Steven J. Burakoff
    You can also search for this author inPubMed Google Scholar
  7. Jose-Carlos Gutierrez-Ramos
    You can also search for this author inPubMed Google Scholar
  8. Cox Terhorst
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Holländer, G., Wang, B., Nichogiannopoulou, A. et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes.Nature 373, 350–353 (1995). https://doi.org/10.1038/373350a0

Download citation

This article is cited by