A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin (original) (raw)

Nature volume 376, pages 249–253 (1995)Cite this article

Abstract

DORSAL-VENTRAL patterning within the ectoderm of the Drosophila embryo requires seven zygotic genes, including _short gastrulation (sog)_1. Here we demonstrate that sog, which is expressed in the ventrolateral region of the embryo that gives rise to the nerve cord2, is functionally homologous to the chordin gene of Xenopus, which is expressed in the dorsal blastopore lip of the embryo and in dorsal mesoderm, in particular the notochord3. We show by injections of messenger RNA that both sog and chordin can promote ventral development in Drosophila, and that sog, like _chordin_3, can promote dorsal development in Xenopus. In Drosophila, sog antagonizes the dorsalizing effects of _decapentaplegic (dpp)_1,2,4, a member of the transforming growth factor-β family. One of the dpp homologues in vertebrates, bmp-4, is expressed ventrally in _Xenopus_5 and promotes ventral development6,7. We show that dpp can promote ventral fates in Xenopus, and that injection of sog mRNA counteracts the ventralizing effects of dpp. These results suggest the molecular conservation of dorsoventral patterning mechanisms during evolution.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Ferguson, E. L. & Anderson, K. V. Development 114, 583–597 (1992).
    CAS Google Scholar
  2. François, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Genes Dev. 8, 2602–2616 (1994).
    Article Google Scholar
  3. Sasai, Y. et al. Cell 79, 779–790 (1994).
    Article CAS Google Scholar
  4. Wharton, K. A., Ray, R. P. & Gelbart, W. M. Development 117, 807–822 (1993).
    CAS Google Scholar
  5. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. EMBO J. 13, 5015–5025 (1994).
    Article CAS Google Scholar
  6. Dale, L., Howes, G., Price, B. M. & Smith, J. C. Development 115, 573–585 (1992).
    CAS Google Scholar
  7. Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. E. & Hogan, B. L. M. Development 115, 639–647 (1992).
    CAS Google Scholar
  8. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Neuron 10, 409–426 (1993).
    Article CAS Google Scholar
  9. Roth, S., Stein, D. & Nüsslein-Volhard, C. Cell 59, 1189–1202 (1989).
    Article CAS Google Scholar
  10. Anderson, K. V., Jürgens, G. & Nüsslein-Volhard, C. Cell 42, 779–789 (1985).
    Article CAS Google Scholar
  11. François, V. & Bier, E. Cell 80, 19–20 (1995).
    Article Google Scholar
  12. Spemann, H. & Mangold, H. Wilhelm Roux Arch. Entw. mech. 100, 599–638 (1924).
    Google Scholar
  13. Stewart, R. & Gerhart, J. Wilhelm Roux Arch. dev. Biol. 199, 341–348 (1991).
    Article Google Scholar
  14. Geoffroy Saint-Hilaire, E. Mem. Mus. Hist. Nat. 9, 89–119 (1822).
    Google Scholar
  15. Arendt, D. & Nübler-Jung, K. Nature 371, 26 (1994).
    Article ADS CAS Google Scholar
  16. Lacalli, T. C. Nature 373, 110–111 (1995).
    Article CAS Google Scholar
  17. Peterson, K. J. Nature 373, 112–112 (1995).
    Article ADS Google Scholar
  18. Ferguson, E. L. & Anderson, K. V. Cell 71, 451–461 (1992).
    Article CAS Google Scholar
  19. Liang, P. & Pardee, A. B. Science 257, 967–971 (1992).
    Article ADS CAS Google Scholar
  20. Zusman, S. B., Sweeton, D. & Wiechaus, E. F. Devl. Biol. 129, 417–427 (1988).
    Article CAS Google Scholar
  21. Tamkun, J. W. et al. Cell. 68, 561–572 (1992).
    Article CAS Google Scholar
  22. Brown, N. H. & Kafatos, F. C. J. molec. Biol. 203, 425–437 (1988).
    Article CAS Google Scholar
  23. Amaya, E., Musci, T. J. & Kirschner, M. W. Cell 66, 257–270 (1991).
    Article CAS Google Scholar
  24. Schneider, D. S., Hudson, K. L., Lin, T.-Y. & Anderson, K. V. Genes Dev. 5, 797–807 (1991).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, Illinois, 60637, USA
    Scott A. Holley & Edwin L. Ferguson
  2. McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin Medical School, Madison, Wisconsin, 53706, USA
    P. David Jackson & F. Michael Hoffmann
  3. Department of Biological Chemistry and Howard Hughes Medical Institute, University of California, Los Angeles, California, 90024, USA
    Yoshiki Sasai, Bin Lu & Eddy M. De Robertis

Authors

  1. Scott A. Holley
    You can also search for this author inPubMed Google Scholar
  2. P. David Jackson
    You can also search for this author inPubMed Google Scholar
  3. Yoshiki Sasai
    You can also search for this author inPubMed Google Scholar
  4. Bin Lu
    You can also search for this author inPubMed Google Scholar
  5. Eddy M. De Robertis
    You can also search for this author inPubMed Google Scholar
  6. F. Michael Hoffmann
    You can also search for this author inPubMed Google Scholar
  7. Edwin L. Ferguson
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Holley, S., Jackson, P., Sasai, Y. et al. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin.Nature 376, 249–253 (1995). https://doi.org/10.1038/376249a0

Download citation

This article is cited by