Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons (original) (raw)

Nature volume 378, pages 75–78 (1995)Cite this article

Abstract

SYNCHRONIZATION of neuronal activity is fundamental in the operation of cortical networks1. With respect to an ongoing synchronized oscillation, the precise timing of action potentials is an attractive candidate mechanism for information coding2–5. Networks of inhibitory interneurons have been proposed to have a role in entraining cortical, synchronized 40-Hz activity6,7. Here we demonstrate that individual GABAergic interneurons8 can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at θ frequencies (4–7 Hz). The efficiency of this entrainment is due to interaction of GABAA-receptor-mediated hyperpolarizing synaptic events with intrinsic oscillatory mechanisms tuned to this frequency range in pyramidal cells. Moreover, this GABAergic mechanism is sufficient to synchronize the firing of pyramidal cells. Thus, owing to the divergence of each GABAergic interneuron9,10, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Singer, W. A. Rev. Physiol. 55, 349–374 (1993).
    Article CAS Google Scholar
  2. Mainen, Z. F. & Sejnowski, T. J. Science 268, 1503–1506 (1995).
    Article ADS CAS Google Scholar
  3. O'Keefe, J. & Recce, M. L. Hippocampus 3, 317–330 (1993).
    Article CAS Google Scholar
  4. Lisman, J. E. & Idiart, M. A. P. Science 267, 1512–1515 (1995).
    Article ADS CAS Google Scholar
  5. Hopfield, J. J. Nature 376, 33–36 (1995).
    Article ADS CAS Google Scholar
  6. Lytton, W. W. & Sejnowski, T. J. J. Neurophysiol. 66, 1059–1079 (1991).
    Article CAS Google Scholar
  7. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Nature 373, 612–615 (1995).
    Article ADS CAS Google Scholar
  8. Buhl, E. H., Halasy, K. & Somogyi, P. Nature 368, 823–828 (1994).
    Article ADS CAS Google Scholar
  9. Li, X. G., Somogyi, P., Tepper, J. M. & Buzsaki, G. Expl. Brain Res. 90, 519–525 (1992).
    Article CAS Google Scholar
  10. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. J. Neurosci. (in the press).
  11. Niedermeyer, E. & Lopes da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Williams & Wilkins, Baltimore, 1993).
    Google Scholar
  12. Vanderwolf, C. H. Electroencephalogr. clin. Neurophysiol. 26, 407–418 (1969).
    Article CAS Google Scholar
  13. Leung, L. W. & Yim, C. Y. Brain Res. 553, 261–274 (1991).
    Article CAS Google Scholar
  14. Fox, S. E. Expl. Brain Res. 77, 283–294 (1989).
    Article CAS Google Scholar
  15. Soltesz, I. & Deschenes, M. J. Neurophysiol. 70, 97–116 (1993).
    Article CAS Google Scholar
  16. Ylinen, A. et al. Hippocampus 5, 79–90 (1995).
    Article Google Scholar
  17. Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).
    Article CAS Google Scholar
  18. Alonso, A. & Llinas, R. R. Nature 342, 175–177 (1989).
    Article ADS CAS Google Scholar
  19. Llinas, R. R. Science 242, 1654–1664 (1988).
    Article ADS CAS Google Scholar
  20. Freund, T. F. & Antal, M. Nature 336, 170–173 (1988).
    Article ADS CAS Google Scholar
  21. Gulyas, A. I. et al. Nature 366, 683–687 (1993).
    Article ADS CAS Google Scholar
  22. Andersen, P., Eccles, J. C. & Løyning, Y. Nature 198, 540–542 (1963).
    Article ADS CAS Google Scholar
  23. Andersen, P. & Eccles, J. Nature 196, 645–647 (1962).
    Article ADS CAS Google Scholar
  24. Mody, I., De Koninck, Y., Otis, T. S. & Soltesz, I. Trends Neurosci. 17, 517–525 (1994).
    Article CAS Google Scholar
  25. Somogyi, P. in Neural Mechanisms of Visual Perception (eds Lam, D. M.-K. & Gilbert, C. D.) 35–62 (Portfolio, The Woodlands, Texas, 1989).
    Google Scholar
  26. Ylinen, A. et al. J. Neurosci. 15, 30–46 (1995).
    Article CAS Google Scholar
  27. Steriade, M., Nunez, A. & Amzica, F. J. Neurosci. 13, 3252–3265 (1993).
    Article CAS Google Scholar
  28. Ginsborg, B. L. Biochim. biophys. Acta 300, 289–317 (1973).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. MRC Anatomical Neuropharmacology Unit, University Department of Pharmacology, Mansfield Road, Oxford, 0X1 3TH, UK
    S. R. Cobb, E. H. Buhl, K. Halasy, O. Paulsen & P. Somogyi
  2. Department of Zoology & Cell Biology, Jozsef Attila University, Szeged, H-6722, Hungary
    K. Halasy

Authors

  1. S. R. Cobb
    You can also search for this author inPubMed Google Scholar
  2. E. H. Buhl
    You can also search for this author inPubMed Google Scholar
  3. K. Halasy
    You can also search for this author inPubMed Google Scholar
  4. O. Paulsen
    You can also search for this author inPubMed Google Scholar
  5. P. Somogyi
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Cobb, S., Buhl, E., Halasy, K. et al. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.Nature 378, 75–78 (1995). https://doi.org/10.1038/378075a0

Download citation

This article is cited by