Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1 (original) (raw)

References

  1. Nagase, H. in Zinc Metalloproteases in Health and Disease(ed. Hooper, N. M.) 153–204 (Taylor and Francis, London, (1996)).
    Google Scholar
  2. Coussens, L. M. & Werb, Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 3, 895–904 (1996).
    Google Scholar
  3. Green, J.et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271, 30375–30380 (1996).
    Google Scholar
  4. Willenbrock, F. & Murphy, G. Structure–function relationships in the tissue inhibitors of metalloproteinases. Am. J. Resp. Crit. Care Med. 150, 5165–5170 (1994).
    Google Scholar
  5. Docherty, A. J. P.et al. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66–69 (1985).
    Article ADS CAS Google Scholar
  6. Murphy, G.et al. The N-terminal domain of human tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30, 8097–8102 (1991).
    Google Scholar
  7. 7. Huang, W.et al. Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinase-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett. 384, 155–161 (1996).
    Google Scholar
  8. Williamson, R. A.et al. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33, 11745–11759 (1994).
    Google Scholar
  9. Gooley, P. R.et al. NMR structure of inhibited catalytic domain of human stomelysin-1. Nature Struct. Biol. 1, 111–118 (1994).
    Google Scholar
  10. Becker, J. W.et al. Stromelysin-1: Three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Prot. Sci. 4, 1966–1976 (1995).
    Google Scholar
  11. Dhanaraj, V.et al. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4, 375–386 (1996).
    Google Scholar
  12. Li, J. -Y.et al. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3, 541–549 (1995).
    MATH Google Scholar
  13. Murzin, A. G. OB-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).
    Google Scholar
  14. Grams, F.et al. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841 (1995).
    Google Scholar
  15. Will, H., Atkinson, S. J., Butler, G. S., Smyth, B. & Murphy, G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autocatalytic activation. J. Biol. Chem. 271, 17119–17123 (1996).
    Google Scholar
  16. Huovila, A. P., Ilmeida, E. A. C. & White, J. M. ADAMs and cell fusion. Curr. Opin. Cell Biol. 8, 692–699 (1996).
    Google Scholar
  17. Stöcker, W.et al. The metzincins: Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823–840 (1995).
    Google Scholar
  18. Kessler, E., Takahara, K., Biniaminov, L., Brusel, M. & Greenspan, D. S. Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science 271, 360–362 (1996).
    Google Scholar
  19. Baumann, U., Wu, S., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of the alkaline proteae of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel β roll motif. EMBO J. 12, 3357–3364 (1993).
    Google Scholar
  20. Bode, W., Gomis-Rüth, F. X., Huber, R., Zwilling, R. & Stöcker, W. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358, 164–166 (1992).
    Article ADS CAS Google Scholar
  21. Gomis-Rüth, F. X., Kress, L. F. & Bode, W. First structure of a snake venom metalloproteinase: prototype for matrix metalloproteinases/collagenases. EMBO J. 12, 4151–4157 (1993).
    Google Scholar
  22. Black, R. A.et al. Ametalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733 (1997).
    Article ADS CAS Google Scholar
  23. Moss, M. L.et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733–736 (1997).
    Article ADS CAS Google Scholar
  24. Otwinowski, Z. & Minor, W. DENZO: A Film Processing for Macromolecular Crystallography(Yale University, New Haven, CT, (1993)).
    Google Scholar
  25. Navaza, J. AMoRe: an automated package for molecular replacement. Acta crystallogr. A 50, 157–163 (1994).
    Google Scholar
  26. Otwinowski, Z. in Isomorphous Replacement and Anomalous Scattering, Daresbury study weekend proceedings(SERC Daresbury Laboratory, Warrington, (1991)).
    Google Scholar
  27. Cowtan, K. Joint CCP4 ESF-EACBM Newsletter on Protein Crystallography Vol. 31(1994).
    Google Scholar
  28. Roussel, A. & Cambilleau, C. Turbo-Frodo in Silicon Graphics Geometry, Partners Directory(Silicon Graphics, Mountain View, CA, (1989)).
    Google Scholar
  29. Brünger, A. T. Crystallographic phasing and refinement of macromolecules. Curr. Opin. Struct. Biol 1, 1016–1022 (1991).
    Google Scholar
  30. Nicholls, A., Bharadwaj, R. & Honig, B. Grasp–graphical representation and analysis of surface properties. Biophys. J. 64, 166 (1993).
    Google Scholar

Download references