ER-to-Golgi transport visualized in living cells (original) (raw)

References

  1. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).
    Google Scholar
  2. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).
    Google Scholar
  3. Aridor, M., Bannykh, S., Rowe, T. & Balch, W. E. Sequential coupling between CopII and CopI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 1–19 (1995).
    Google Scholar
  4. Pluttner, H., Davidson, H. W., Saraste, J. & Balch, W. E. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the p58 containing compartment. J. Cell Biol. 119, 1097–1116 (1992).
    Google Scholar
  5. Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430 (1991).
    Google Scholar
  6. Saraste, J. & Kuismanen, E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin. Cell Biol. 3, 343–355 (1992).
    Google Scholar
  7. 7. Krijnse-Locker, J., Ericsson, M., Rottier, P. J. & Griffiths, G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol. 124, 55–70 (1994).
    Google Scholar
  8. Stinchcombe, J. C., Nomoto, H., Cutler, D. F. & Hopkins, C. R. Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J. Cell Biol. 131, 1387–1401 (1995).
    Google Scholar
  9. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).
    Google Scholar
  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).
    Google Scholar
  11. Kreis, T. E. & Lodish, H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46, 929–937 (1986).
    Google Scholar
  12. Beckers, C. J., Keller, D. S. & Balch, W. E. Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50, 523–534 (1987).
    Google Scholar
  13. Bergmann, J. E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell Biol. 32, 85–110 (1989).
    Google Scholar
  14. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz. J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).
    Article CAS Google Scholar
  15. Schweizer, A., Fransen, J. A. M., Bachi, T., Ginsel, L. & Hauri, H. -P. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653 (1988).
    Google Scholar
  16. Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol. 128, 293–306 (1995).
    Google Scholar
  17. Pepperkok, R.et al. βCOP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 (1993).
    Google Scholar
  18. Peter, F., Plutner, H., Zhu, H., Kreis, T. E. & Balch, W. E. β-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122, 1155–1168 (1993).
    Google Scholar
  19. Balch, W. E., McCaffery, J. M., Pluttner, H. & Farquhar, M. G. Vesicular stomatitis virus is sorted and concentrated upon exit from the endoplasmic reticulum. Cell 76, 841–852 (1994).
    Google Scholar
  20. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).
    Google Scholar
  21. Kuismanen, E. & Saraste, J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol. 32, 257–274 (1989).
    Google Scholar
  22. Hauri, H. -P. & Schweizer, A. The endoplasmic reticulum–Golgi intermediate compartment. Curr. Opin. Cell Biol. 4, 600–608 (1992).
    Google Scholar
  23. Lotti, L. V., Torrisi, M. R., Pascale, M. C. & Bonatti, S. Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex. J. Cell Biol. 118, 43–50 (1992).
    Google Scholar
  24. Walker, R. A. & Sheetz, M. P. Cytoplasmic microtubule-associated motors. Annu. Rev. Biochem. 62, 429–451 (1993).
    Google Scholar
  25. Cole, N. B.et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).
    Google Scholar
  26. Schroer, T. A., Bingham, J. B. & Gill, S. R. Actin-related protein 1 and cytoplasmic dynein-based motility: What's the connection? Trends Cell Biol. 6, 212–215 (1996).
    Google Scholar
  27. Gaglio, T.et al. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol. 135, 399–414 (1996).
    Google Scholar
  28. Echeverri, C. J., Paschal, B. B., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).
    Google Scholar
  29. Burkhardt, J. K., Echeverri, C. J. & Vallee, R. B. Overexpression of the p50 subunit of dynactin perturbs the positioning of the Golgi apparatus and endosomes. Mol. Biol. Cell 6, 266a (1995).
    Google Scholar
  30. Gallione, C. J. & Rose, J. K. Asingle amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 54, 374–382 (1985).
    Google Scholar
  31. Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–842 (1996).
    Google Scholar

Download references