ER-to-Golgi transport visualized in living cells (original) (raw)
References
Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science272, 227–234 (1996). Google Scholar
Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science271, 1526–1533 (1996). Google Scholar
Aridor, M., Bannykh, S., Rowe, T. & Balch, W. E. Sequential coupling between CopII and CopI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol.131, 1–19 (1995). Google Scholar
Pluttner, H., Davidson, H. W., Saraste, J. & Balch, W. E. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the p58 containing compartment. J. Cell Biol.119, 1097–1116 (1992). Google Scholar
Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci.100, 415–430 (1991). Google Scholar
Saraste, J. & Kuismanen, E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin. Cell Biol.3, 343–355 (1992). Google Scholar
7. Krijnse-Locker, J., Ericsson, M., Rottier, P. J. & Griffiths, G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol.124, 55–70 (1994). Google Scholar
Stinchcombe, J. C., Nomoto, H., Cutler, D. F. & Hopkins, C. R. Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J. Cell Biol.131, 1387–1401 (1995). Google Scholar
Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene111, 229–233 (1992). Google Scholar
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science263, 802–805 (1994). Google Scholar
Kreis, T. E. & Lodish, H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell46, 929–937 (1986). Google Scholar
Beckers, C. J., Keller, D. S. & Balch, W. E. Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell50, 523–534 (1987). Google Scholar
Bergmann, J. E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell Biol.32, 85–110 (1989). Google Scholar
Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz. J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell7, 631–650 (1996). ArticleCAS Google Scholar
Schweizer, A., Fransen, J. A. M., Bachi, T., Ginsel, L. & Hauri, H. -P. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol.107, 1643–1653 (1988). Google Scholar
Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol.128, 293–306 (1995). Google Scholar
Pepperkok, R.et al. βCOP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell74, 71–82 (1993). Google Scholar
Peter, F., Plutner, H., Zhu, H., Kreis, T. E. & Balch, W. E. β-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol.122, 1155–1168 (1993). Google Scholar
Balch, W. E., McCaffery, J. M., Pluttner, H. & Farquhar, M. G. Vesicular stomatitis virus is sorted and concentrated upon exit from the endoplasmic reticulum. Cell76, 841–852 (1994). Google Scholar
Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol.135, 19–35 (1996). Google Scholar
Kuismanen, E. & Saraste, J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol.32, 257–274 (1989). Google Scholar
Hauri, H. -P. & Schweizer, A. The endoplasmic reticulum–Golgi intermediate compartment. Curr. Opin. Cell Biol.4, 600–608 (1992). Google Scholar
Lotti, L. V., Torrisi, M. R., Pascale, M. C. & Bonatti, S. Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex. J. Cell Biol.118, 43–50 (1992). Google Scholar
Walker, R. A. & Sheetz, M. P. Cytoplasmic microtubule-associated motors. Annu. Rev. Biochem.62, 429–451 (1993). Google Scholar
Cole, N. B.et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science273, 797–801 (1996). Google Scholar
Schroer, T. A., Bingham, J. B. & Gill, S. R. Actin-related protein 1 and cytoplasmic dynein-based motility: What's the connection? Trends Cell Biol.6, 212–215 (1996). Google Scholar
Gaglio, T.et al. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol.135, 399–414 (1996). Google Scholar
Echeverri, C. J., Paschal, B. B., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol.132, 617–633 (1996). Google Scholar
Burkhardt, J. K., Echeverri, C. J. & Vallee, R. B. Overexpression of the p50 subunit of dynactin perturbs the positioning of the Golgi apparatus and endosomes. Mol. Biol. Cell6, 266a (1995). Google Scholar
Gallione, C. J. & Rose, J. K. Asingle amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol.54, 374–382 (1985). Google Scholar
Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol.133, 831–842 (1996). Google Scholar