Orientation selectivity of thalamic input to simple cells of cat visual cortex (original) (raw)

Nature volume 380, pages 249–252 (1996)Cite this article

Abstract

MORE than 30 years after Hubel and Wiesel1 first described orientation selectivity in the mammalian visual cortex, the mechanism that gives rise to this property is still controversial. Hubel and Wiesel1 proposed a simple model for the origin of orientation tuning, in which the circularly symmetrical receptive fields of neurons in the lateral geniculate nucleus that excite a cortical simple cell are arranged in rows. Since this model was proposed, several experiments2–6 and neuronal simulations7,8 have suggested that the connectivity between the lateral geniculate nucleus and the cortex is not well organized in an orientation-specific fashion, and that orientation tuning arises instead from extensive interactions within the cortex. To test these models we have recorded visually evoked synaptic potentials in simple cells while cooling the cortex9, which largely inactivates the cortical network, but leaves geniculate synaptic input functional. We report that the orientation tuning of these potentials is almost unaffected by cooling the cortex, in agreement with Hubel and Wiesel's original proposal1.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).
    Article CAS Google Scholar
  2. Blakemore, C. & Tobin, E. A. Expl Brain Res. 15, 439–440 (1972).
    Article CAS Google Scholar
  3. Creutzfeldt, O. D., Kuhnt, U. & Benevento, L. A. Expl Brain Res. 21, 251–274 (1974).
    CAS Google Scholar
  4. Sillito, A. M. J. Physiol., Lond. 250, 305–329 (1975).
    Article CAS Google Scholar
  5. Crook, J. M., Eysel, U. T. & Machemer, H. F. Neuroscience 40, 1–12 (1991).
    Article CAS Google Scholar
  6. Kisvarday, Z. F., Kim, D. S., Eysel, U. T. & Bonhoeffer, T. Eur. J. Neurosci. 6, 1619–1632 (1994).
    Article CAS Google Scholar
  7. Douglas, R. J. & Martin, K. A. C. J. Physiol., Lond. 440, 735–769 (1991).
    Article CAS Google Scholar
  8. Somers, D. C., Nelson, S. B. & Sur, M. J. Neurosci. 15, 5448–5465 (1995).
    Article CAS Google Scholar
  9. Kalil, R. E. & Chase, R. J. Neurophysiol. 33, 459–474 (1970).
    Article CAS Google Scholar
  10. Gilbert, C. D. & Kelly, J. P. J. comp. Neurol. 163, 81–105 (1975).
    Article CAS Google Scholar
  11. Ferster, D. & Lindström, S. J. Physiol., Lond. 367, 233–252 (1985).
    Article CAS Google Scholar
  12. LeVay, S. & Gilbert, C. D. Brain Res. 113, 1–19 (1976).
    Article CAS Google Scholar
  13. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).
    Article ADS CAS Google Scholar
  14. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–289 (1965).
    Article CAS Google Scholar
  15. Shatz, C. J. J. comp. Neurol. 173, 497–518 (1977).
    Article CAS Google Scholar
  16. Ferster, D. J. Neurosci. 6, 1284–1301 (1986).
    Article CAS Google Scholar
  17. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. Nature 332, 642–644 (1988).
    Article ADS CAS Google Scholar
  18. Ferster, D. & Jagadeesh, B. J. Neurosci. 12, 1262–1274 (1992).
    Article CAS Google Scholar
  19. Nelson, S., Toth, L., Sheth, B. & Sur, M. Science 265, 774–777 (1994).
    Article ADS CAS Google Scholar
  20. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Science 269, 981–985 (1995).
    Article ADS CAS Google Scholar
  21. Saul, A. B. & Humphrey, A. L. J. Neurophysiol. 64, 206–224 (1990).
    Article CAS Google Scholar
  22. Maex, R. thesis, Katholieke Univ. Leuven (1994).
  23. Suarez, H., Koch, C. & Douglas, R. J. Neurosci. 15, 6700–6719 (1995).
    Article CAS Google Scholar
  24. Tanaka, K. J. Neurophysiol. 49, 1303–1318 (1983).
    Article CAS Google Scholar
  25. Reid, R. C. & Alonso, J.-M. Nature 378, 281–284 (1995).
    Article ADS CAS Google Scholar
  26. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).
    Article CAS Google Scholar
  27. Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).
    Article CAS Google Scholar
  28. Chapman, B. & Stryker, M. P. J. Neurosci. 13, 5251–5262 (1993).
    Article CAS Google Scholar
  29. Miller, K. D. J. Neurosci. 14, 409–441 (1994).
    Article CAS Google Scholar
  30. Schwark, H. D., Malpeli, J. G., Weyand, T. G. & Lee, C. J. Neurophysiol. 56, 1074–1087 (1986).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Neurobiology and Physiology, Northwestern University, 2153 North Campus Drive, Evanston, Illinois, 60208, USA
    David Ferster, Sooyoung Chung & Heidi Wheat

Authors

  1. David Ferster
    You can also search for this author inPubMed Google Scholar
  2. Sooyoung Chung
    You can also search for this author inPubMed Google Scholar
  3. Heidi Wheat
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex.Nature 380, 249–252 (1996). https://doi.org/10.1038/380249a0

Download citation