Relationship between asymmetric nodal expression and the direction of embryonic turning (original) (raw)

Nature volume 381, pages 155–158 (1996)Cite this article

Abstract

GROWTH factors related to TGF-β provide important signals for patterning the vertebrate body plan1–3. One such family member, nodal, is required for formation of the primitive streak during mouse gastrulation4–6. Here we have used a nodal–lacZ reporter allele to demonstrate asymmetric nodal expression in the mouse node, a structure thought to be the functional equivalent of the frog and chick 'organizer'7, and in lateral plate mesoderm cells. We have also identified two additional genes acting with nodal in a pathway determining the left–right body axis. Thus we observe in inv mutant embryos8 that the sidedness of nodal expression correlates with the direction of heart looping and embryonic turning. In contrast, HNF3-β+/- nodal lacZ/+ double-heterozygous embryos display LacZ staining on both left and right sides, and frequently exhibit defects in body situs. Taken together, these experiments, along with similar findings in chick9, demonstrate that elements of the genetic pathway that establish the left–right body axis are conserved in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kessler, D. S. & Melton, D. A. Science 266, 596–604 (1994).
    Article ADS CAS Google Scholar
  2. Kingsley, D. M. Genes Dev. 8, 133–146 (1994).
    Article CAS Google Scholar
  3. Conlon, F. L. & Beddington, R. S. P. Semin. dev. Biol. 6, 249–256 (1995).
    Article Google Scholar
  4. Conlon, F. L., Barth, K. S. & Robertson, E. J. Development 111, 969–981 (1991).
    CAS PubMed Google Scholar
  5. Lannaccone, P. M., Zhou, X., Khokha, M., Boucher, D. & Kuehn, M. R. Devl Dyn. 194, 198–208 (1992).
    Article Google Scholar
  6. Conlon, F. L. et al. Development 120, 1919–1928 (1994).
    CAS Google Scholar
  7. Beddington, R. S. P. Development 120, 613–620 (1994).
    CAS Google Scholar
  8. Yokoyama, T. at al. Science 260, 679–682 (1993).
    Article ADS CAS Google Scholar
  9. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Cell 82, 803–814 (1995).
    Article CAS Google Scholar
  10. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M. & Kuehn, M. R. Nature 361, 543–547 (1993).
    Article ADS CAS Google Scholar
  11. Mountford, P. et al. Proc. natn. Acad. Sci. U.S.A. 91, 4303–4307 (1994).
    Article ADS CAS Google Scholar
  12. Cooke, J. Nature 374, 681 (1995).
    Article ADS CAS Google Scholar
  13. Beddington, R. S. P. J. Embryol. exp. Morph. 64, 87–104 (1981).
    CAS PubMed Google Scholar
  14. Beddington, R. S. P. J. Embryol. exp. Morph. 69, 265–285 (1982).
    CAS PubMed Google Scholar
  15. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Development 113, 891–911 (1991).
    CAS PubMed Google Scholar
  16. Tam, P. P. L. & Beddington, R. S. P. Development 99, 109–126 (1987).
    CAS PubMed Google Scholar
  17. Smith, J. L., Gesteland, K. M. & Schoenwolf, G. C. Devl Dyn. 201, 279–289 (1994).
    Article CAS Google Scholar
  18. Parameswaran, M. & Tam, P. P. L. Devl. Genet. 17, 16–28 (1995).
    Article CAS Google Scholar
  19. Echelard, Y. et el. Cell 75, 1417–1430 (1993).
    Article CAS Google Scholar
  20. Chang, D. T. et al. Development 120, 3339–3353 (1994).
    CAS Google Scholar
  21. Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H. & McMahon, A. P. Development 121, 2537–2547 (1995).
    CAS PubMed Google Scholar
  22. Ang, S.-L. & Rossant, J. Cell 78, 561–574 (1994).
    Article CAS Google Scholar
  23. Weinstein, D. C. et al. Cell 78, 575–588 (1994).
    Article CAS Google Scholar
  24. Poirier, F. & Robertson, E. J. Development 119, 1229–1236 (1993).
    CAS PubMed Google Scholar
  25. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, NY, 1994).
    Google Scholar
  26. Wilkinson, D. G. in In situ Hybridization (ed. Wilkinson, D. G.) 75–83 (IRL, Oxford, 1992).
    Google Scholar
  27. Kaufman, M. H. Atlas of Mouse Development (Academic, London, 1992).
    Google Scholar
  28. Neito, M. A., Bennett, M. F., Sargent, M. G. & Wilkinson, D. G. Development 116, 227–237 (1992).
    Google Scholar
  29. Smith, D. E., Del Amo, F. F. & Gridley, T. Development 116, 1033–1039 (1992).
    CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
    Jérôme Collignon, Isabella Varlet & Elizabeth J. Robertson

Authors

  1. Jérôme Collignon
    You can also search for this author inPubMed Google Scholar
  2. Isabella Varlet
    You can also search for this author inPubMed Google Scholar
  3. Elizabeth J. Robertson
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Collignon, J., Varlet, I. & Robertson, E. Relationship between asymmetric nodal expression and the direction of embryonic turning.Nature 381, 155–158 (1996). https://doi.org/10.1038/381155a0

Download citation