Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs (original) (raw)

Nature volume 382, pages 255–257 (1996)Cite this article

Abstract

THE question of whether nicotine, the neuroactive compound of tobacco, is addictive has been open to considerable scientific and public discussion. Although it can serve as a positive reinforcer in several animal species, including man, nicotine is thought to be a weak reinforcer in comparison with addictive drugs such as cocaine and heroin1,2, and has been argued to be habit forming but not addictive3,4. Here we report that intravenous nicotine in the rat, at doses known to maintain self-administration, stimulates local energy metabolism, as measured by 2-deoxyglucose autoradiography, and dopamine transmission, as estimated by brain microdialysis, in the shell of the nucleus accumbens. These neurochemical and metabolic effects are qualitatively similar to those of other drugs, such as cocaine, amphetamine and morphine, which have strong addictive properties5–7. Our results provide functional and neurochemical evidence that there are specific neurobiological commonalities between nicotine and addictive drugs.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Stolerman, I. P. in Handbook of Psychopharmacology (eds Iversen, L. L, Iversen, L. D. & Snyder, S. H.) 421–465 (Plenum, New York, 1987).
    Book Google Scholar
  2. Swedberg, M. D. B., Henningfield, J. E. & Goldberg, S. R. in Nicotine Psychopharmacology: Molecular, Cellular and Behavioral Aspects (eds Wonnacott, S., Russell, M. A. H. & Stolerman, I. P.) 38–76 (Oxford Science, Oxford, 1990).
    Google Scholar
  3. Robinson, J. H. & Pritchards, W. S. Psychopharmacology 108, 397–407 (1992).
    Article CAS Google Scholar
  4. Warburton, D. M., Revell, A. & Walters, A. C. in The Pharmacology of Nicotine (eds Rand, M. & Thurau, K.) 359–373 (IRL, Oxford, 1989).
    Google Scholar
  5. Pontieri, F. E. et al. NeuroReport 5, 2561–2564 (1994).
    Article CAS Google Scholar
  6. Orzi, F. et al. Eur. J. Pharmac. (in the press).
  7. Pontieri, F. E., Tanda, G. & Di Chiara, G. Proc. natn. Acad. Sci. U.S.A. 92, 12304–12308 (1995).
    Article ADS CAS Google Scholar
  8. Wise, R. A. & Bozarth, M. A. Psychol. Rev. 94, 469–492 (1987).
    Article CAS Google Scholar
  9. Koob, G. F. Trends pharmac. Sci. 13, 177–184 (1992).
    Article CAS Google Scholar
  10. Di Chiara, G. Drug Alcohol Depend. 38, 95–121 (1995).
    Article CAS Google Scholar
  11. Di Chiara, G. & Imperato, A. Proc. natn. Acad. Sci. U.S.A. 88, 5274–5278 (1988).
    Article ADS Google Scholar
  12. Alheid, G. F. & Heimer, L. Neuroscience 27, 1–39 (1988).
    Article CAS Google Scholar
  13. Heimer, L. et al. Neuroscience 41, 89–125 (1991).
    Article CAS Google Scholar
  14. Corrigall, W. A. & Coen, K. M. Psychopharmacology 99, 473–478 (1989).
    Article CAS Google Scholar
  15. Corrigall, W. A. in Effects of Nicotine on Biological Systems (eds Adklofer, F. & Thurau, K.) 423–432 (Birkhauser, Boston, 1991).
    Book Google Scholar
  16. Sokoloff, L. et al. J. Neurochem. 28, 897–916 (1977).
    Article CAS Google Scholar
  17. Ungerstedt, U. in Measurement of Neurotransmitter Release in Vivo (ed. Marsden, C. A.) 81–105 (Wiley, Chichester, 1984).
    Google Scholar
  18. Di Chiara, G. Trends pharmac. Sci. 11, 116–121 (1990).
    Article CAS Google Scholar
  19. London, E. D. et al. J. Neurosci. 8, 3920–3928 (1988).
    Article CAS Google Scholar
  20. McNamara, D. et al. J. cerebr. Blood Flow Metab. 10, 48–56 (1990).
    Article CAS Google Scholar
  21. Grunwald, F., Schrock, H. & Kuschinsky, W. Brain Res. 400, 232–238 (1987).
    Article CAS Google Scholar
  22. Porrino, L. J. Psychopharmacology 112, 343–351 (1993).
    Article CAS Google Scholar
  23. Imperato, A., Mulas, A. & Di Chiara, G. Eur. J. Pharmac. 132, 337–338 (1986).
    Article CAS Google Scholar
  24. Damsma, G., Day, J. & Fibiger, N. C. Eur. J. Pharmac. 168, 368–371 (1989).
    Article Google Scholar
  25. Henningfield, J. E. & Heishman, S. J. Psychopharmacology 117, 11–13 (1995).
    Article CAS Google Scholar
  26. Tiffany, S. T. Psychol. Rev. 97, 147–168 (1990).
    Article CAS Google Scholar
  27. Crane, A. M. & Porrino, L J. Brain Res. 499, 87–92 (1989).
    Article CAS Google Scholar
  28. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, Sydney, 1987).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Neuroscience, University 'La Sapienza', Viale dell'Université 30, 00185, Rome, Italy
    Francesco E. Pontieri & Francesco Orzi
  2. Department of Toxicology and CNR Centre for Neuropharmacology, University of Cagliari, Viale A. Diaz 182, 09126, Cagliari, Italy
    Gianluigi Tanda & Gaetano Di Chiara
  3. INM 'Neuromed', Pozzilli (IS), Italy
    Francesco Orzi

Authors

  1. Francesco E. Pontieri
    You can also search for this author inPubMed Google Scholar
  2. Gianluigi Tanda
    You can also search for this author inPubMed Google Scholar
  3. Francesco Orzi
    You can also search for this author inPubMed Google Scholar
  4. Gaetano Di Chiara
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Pontieri, F., Tanda, G., Orzi, F. et al. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs.Nature 382, 255–257 (1996). https://doi.org/10.1038/382255a0

Download citation