A DNA-based method for rationally assembling nanoparticles into macroscopic materials (original) (raw)
- Letter
- Published: 15 August 1996
Nature volume 382, pages 607–609 (1996)Cite this article
- 55k Accesses
- 6362 Citations
- 85 Altmetric
- Metrics details
Abstract
COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994).
- Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic, San Diego, 1991).
- Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. J. Cell Biol. 126, 863–876 (1994).
Article CAS Google Scholar - Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. J. chem. Soc. Faraday II 75, 790–798 (1979).
Article CAS Google Scholar - Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).
Article CAS Google Scholar - Dubois, L. H. & Nuzzo, R. G. A. Rev. phys. Chem. 43, 437–463 (1992).
Article ADS CAS Google Scholar - Bain, C. D. & Whitesides, G. M. Angew. Chem. int. Edn. engl. 28, 506–512 (1989).
Article Google Scholar - Shekhtman, E. M., Wasserman, S. A., Cozzarelli, N. R. & Solomon, M. J. New J. Chem. 17, 757–763 (1993).
CAS Google Scholar - Shaw, S. Y. & Wang, J. C. Science 260, 533–536 (1993).
Article ADS CAS Google Scholar - Herrlein, M. K., Nelson, J. S. & Letsinger, R. L. J. Am. Chem. Soc. 117, 10151–10152 (1995).
Article CAS Google Scholar - Chen, J. H. & Seeman, N. C. Nature 350, 631–633 (1991).
Article ADS CAS Google Scholar - Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).
Article ADS CAS Google Scholar - Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. Biochemistry 32, 1899–1904 (1993).
Article CAS Google Scholar - Chen, L. Q., Cai, L., Zhang, X. H. & Rich, A. Biochemistry 33, 13540–13546 (1994).
Article CAS Google Scholar - Marsh, T. C., Vesenka, J. & Henderson, E. Nucleic Acids Res. 23, 696–700 (1995).
Article CAS Google Scholar - Mirkin, S. M. & Frankkamenetskii, M. D. A. Rev. Biophys. biomolec. Struct. 23, 541–576 (1994).
Article CAS Google Scholar - Wells, R. D. J. biol. Chem. 263, 1095–1098 (1988).
CAS Google Scholar - Wang, Y., Mueller, J. E., Kemper, B. & Seeman, N. C. Biochemistry 30, 5667–5674 (1991).
Article CAS Google Scholar - Seeman, N. C. et al. New J. Chem. 17, 739–755 (1993).
CAS Google Scholar - Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Analyt. Chem. 67, 735–743 (1995).
Article CAS Google Scholar - Mucic, R. C., Herrlein, M. K., Mirkin, C. A. & Letsinger, R. L. J. chem. Soc., chem. Commun. 555–557 (1996).
- Linnert, T., Mulvaney, P. & Henglein, A. J. phys. Chem. 97, 679–682 (1993).
Article CAS Google Scholar - Herron, N., Wang, Y. & Eckert, H. J. Am. chem. Soc. 112, 1322–1326 (1990).
Article CAS Google Scholar - Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).
Article CAS Google Scholar
Author information
Authors and Affiliations
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic & James J. Storhoff
Authors
- Chad A. Mirkin
- Robert L. Letsinger
- Robert C. Mucic
- James J. Storhoff
Rights and permissions
About this article
Cite this article
Mirkin, C., Letsinger, R., Mucic, R. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature 382, 607–609 (1996). https://doi.org/10.1038/382607a0
- Received: 19 April 1996
- Accepted: 24 June 1996
- Issue date: 15 August 1996
- DOI: https://doi.org/10.1038/382607a0