A DNA-based method for rationally assembling nanoparticles into macroscopic materials (original) (raw)

Nature volume 382, pages 607–609 (1996)Cite this article

Abstract

COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994).
  2. Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic, San Diego, 1991).
  3. Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. J. Cell Biol. 126, 863–876 (1994).
    Article CAS Google Scholar
  4. Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. J. chem. Soc. Faraday II 75, 790–798 (1979).
    Article CAS Google Scholar
  5. Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).
    Article CAS Google Scholar
  6. Dubois, L. H. & Nuzzo, R. G. A. Rev. phys. Chem. 43, 437–463 (1992).
    Article ADS CAS Google Scholar
  7. Bain, C. D. & Whitesides, G. M. Angew. Chem. int. Edn. engl. 28, 506–512 (1989).
    Article Google Scholar
  8. Shekhtman, E. M., Wasserman, S. A., Cozzarelli, N. R. & Solomon, M. J. New J. Chem. 17, 757–763 (1993).
    CAS Google Scholar
  9. Shaw, S. Y. & Wang, J. C. Science 260, 533–536 (1993).
    Article ADS CAS Google Scholar
  10. Herrlein, M. K., Nelson, J. S. & Letsinger, R. L. J. Am. Chem. Soc. 117, 10151–10152 (1995).
    Article CAS Google Scholar
  11. Chen, J. H. & Seeman, N. C. Nature 350, 631–633 (1991).
    Article ADS CAS Google Scholar
  12. Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).
    Article ADS CAS Google Scholar
  13. Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. Biochemistry 32, 1899–1904 (1993).
    Article CAS Google Scholar
  14. Chen, L. Q., Cai, L., Zhang, X. H. & Rich, A. Biochemistry 33, 13540–13546 (1994).
    Article CAS Google Scholar
  15. Marsh, T. C., Vesenka, J. & Henderson, E. Nucleic Acids Res. 23, 696–700 (1995).
    Article CAS Google Scholar
  16. Mirkin, S. M. & Frankkamenetskii, M. D. A. Rev. Biophys. biomolec. Struct. 23, 541–576 (1994).
    Article CAS Google Scholar
  17. Wells, R. D. J. biol. Chem. 263, 1095–1098 (1988).
    CAS Google Scholar
  18. Wang, Y., Mueller, J. E., Kemper, B. & Seeman, N. C. Biochemistry 30, 5667–5674 (1991).
    Article CAS Google Scholar
  19. Seeman, N. C. et al. New J. Chem. 17, 739–755 (1993).
    CAS Google Scholar
  20. Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Analyt. Chem. 67, 735–743 (1995).
    Article CAS Google Scholar
  21. Mucic, R. C., Herrlein, M. K., Mirkin, C. A. & Letsinger, R. L. J. chem. Soc., chem. Commun. 555–557 (1996).
  22. Linnert, T., Mulvaney, P. & Henglein, A. J. phys. Chem. 97, 679–682 (1993).
    Article CAS Google Scholar
  23. Herron, N., Wang, Y. & Eckert, H. J. Am. chem. Soc. 112, 1322–1326 (1990).
    Article CAS Google Scholar
  24. Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
    Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic & James J. Storhoff

Authors

  1. Chad A. Mirkin
  2. Robert L. Letsinger
  3. Robert C. Mucic
  4. James J. Storhoff

Rights and permissions

About this article

Cite this article

Mirkin, C., Letsinger, R., Mucic, R. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature 382, 607–609 (1996). https://doi.org/10.1038/382607a0

Download citation