Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A (original) (raw)

Nature volume 382, pages 622–626 (1996)Cite this article

Abstract

CYCLIC AMP is an important second messenger in the coordinated regulation of cellular metabolism. Its effects are mediated by cAMP-dependent protein kinase (PKA), which is assembled from two regulatory (R) and two catalytic (C) subunits. In mice there are four R genes (encoding RIα, RIβ, RIIα, and RIIβ) and two C genes (encoding Cα and Cβ), expressed in tissue-specific patterns1. The RIIβ isoform is abundant in brown and white adipose tissue and brain, with limited expression elsewhere. To elucidate its functions, we generated RIIβ knockout mice. Here we report that mutants appear healthy but have markedly diminished white adipose tissue despite normal food intake. They are protected against developing diet-induced obesity and fatty livers. Mutant brown adipose tissue exhibits a compensatory increase in RIα, which almost entirely replaces lost RIIβ, generating an isoform switch. The holoenzyme from mutant adipose tissue binds cAMP more avidly and is more easily activated than wild-type enzyme. This causes induction of uncoupling protein and elevations of metabolic rate and body temperature, contributing to the lean phenotype. Our results demonstrate a role for the RIIβ holoenzyme in regulating energy balance and adiposity.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. McKnight, G. S. Curr. Opin. Cell Biol. 3, 213–217 (1991).
    Article CAS Google Scholar
  2. Stein, D. T., Babcock, E. E., Malloy, C. R. & McGarry, J. D. Int. J. Obes. relat. metab. Disord. 19, 804–810 (1995).
    CAS PubMed Google Scholar
  3. Himms-Hagen, J. FASEB J. 4, 2890–2898 (1990).
    Article CAS Google Scholar
  4. Rothwell, N. J. & Stock, M. J. Nature 281, 31–35 (1979).
    Article ADS CAS Google Scholar
  5. Kopeck'y, J. et al. J. biol. Chem. 265, 22204–22209 (1990).
    CAS Google Scholar
  6. Jequier, E. & Felber, J.-P. Bailliere's clin. Endocr. Metab. 1, 911–935 (1987).
    Article CAS Google Scholar
  7. Carneheim, C., Nedergaard, J. & Cannon, B. Am. J. Physiol. 254, E155–E161 (1988).
    CAS PubMed Google Scholar
  8. Zhang, Y. et al. Nature 372, 425–432 (1994).
    Article ADS CAS Google Scholar
  9. Chen, H. et al. Cell 84, 491–495 (1996).
    Article CAS Google Scholar
  10. Lee, G.-H. et al. Nature 379, 632–635 (1996).
    Article ADS CAS Google Scholar
  11. Chua, S. C. et al. Science 271, 994–997 (1996).
    Article ADS CAS Google Scholar
  12. Noben-Trauth, K., Naggert, J. K., North, M. A. & Nishina, P. M. Nature 380, 534–538 (1996).
    Article ADS CAS Google Scholar
  13. Friedman, J. M. & Leibel, R. L. Cell 96, 217–220 (1992).
    Article Google Scholar
  14. Lowell, B. B. et al. Nature 366, 740–742 (1993).
    Article ADS CAS Google Scholar
  15. Tecott, L. H. et al. Nature 374, 542–546 (1995).
    Article ADS CAS Google Scholar
  16. Schneider, A., Davidson, J.J., Wullrich, A. & Kilimann, M. W. Nature Genet. 5, 381–385 (1993).
    Article CAS Google Scholar
  17. Katz, E. B., Stenblt, A. E., Hatton, K., DePinho, R. & Charron, M. J. Nature 377, 151–155 (1995).
    Article ADS CAS Google Scholar
  18. Kozak, L. P., Kozak, U. C. & Clarke, G. T. Genes Dev. 5, 2256–2264 (1991).
    Article CAS Google Scholar
  19. Pelleymounter, M. A. et al. Science 269, 540–543 (1995).
    Article ADS CAS Google Scholar
  20. Halaas, J. L. et al. Science 269, 543–546 (1995).
    Article ADS CAS Google Scholar
  21. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Science 269, 546–549 (1995).
    Article ADS CAS Google Scholar
  22. Flier, J. S. Cell 80, 15–18 (1995).
    Article CAS Google Scholar
  23. Lafontan, M. & Berlan, M. J. Lipid Res. 34, 1057–1091 (1993).
    CAS PubMed Google Scholar
  24. Arner, P. New Engl. J. Med. 333, 382–383 (1995).
    Article CAS Google Scholar
  25. Surwit, R. S. et al. Metabolism 44, 645–651 (1995).
    Article CAS Google Scholar
  26. Clegg, C. H., Cadd, G. G. & McKnight, G. S. Proc natn. Acad. Sci. U.S.A. 85, 3703–3707 (1988).
    Article ADS CAS Google Scholar
  27. Clegg, C. H., Correll, L. A., Cadd, G. G. & McKnight, G. S. J. biol. Chem. 262, 13111–13119 (1987).
    CAS Google Scholar
  28. Doskeland, S. O. & Ogreid, D. Meth. Enzym. 159, 147–150 (1988).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, 98195–7750, USA
    David E. Cummings, Eugene P. Brandon, Josep V. Planas, Kouros Motamed, Rejean L. Idzerda & G. Stanley McKnight

Authors

  1. David E. Cummings
  2. Eugene P. Brandon
  3. Josep V. Planas
  4. Kouros Motamed
  5. Rejean L. Idzerda
  6. G. Stanley McKnight

Rights and permissions

About this article

Cite this article

Cummings, D., Brandon, E., Planas, J. et al. Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A.Nature 382, 622–626 (1996). https://doi.org/10.1038/382622a0

Download citation

This article is cited by