Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A (original) (raw)
- Letter
- Published: 15 August 1996
- Eugene P. Brandon1,
- Josep V. Planas1,
- Kouros Motamed1,
- Rejean L. Idzerda1 &
- …
- G. Stanley McKnight1
Nature volume 382, pages 622–626 (1996)Cite this article
- 1500 Accesses
- 379 Citations
- 7 Altmetric
- Metrics details
Abstract
CYCLIC AMP is an important second messenger in the coordinated regulation of cellular metabolism. Its effects are mediated by cAMP-dependent protein kinase (PKA), which is assembled from two regulatory (R) and two catalytic (C) subunits. In mice there are four R genes (encoding RIα, RIβ, RIIα, and RIIβ) and two C genes (encoding Cα and Cβ), expressed in tissue-specific patterns1. The RIIβ isoform is abundant in brown and white adipose tissue and brain, with limited expression elsewhere. To elucidate its functions, we generated RIIβ knockout mice. Here we report that mutants appear healthy but have markedly diminished white adipose tissue despite normal food intake. They are protected against developing diet-induced obesity and fatty livers. Mutant brown adipose tissue exhibits a compensatory increase in RIα, which almost entirely replaces lost RIIβ, generating an isoform switch. The holoenzyme from mutant adipose tissue binds cAMP more avidly and is more easily activated than wild-type enzyme. This causes induction of uncoupling protein and elevations of metabolic rate and body temperature, contributing to the lean phenotype. Our results demonstrate a role for the RIIβ holoenzyme in regulating energy balance and adiposity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- McKnight, G. S. Curr. Opin. Cell Biol. 3, 213–217 (1991).
Article CAS Google Scholar - Stein, D. T., Babcock, E. E., Malloy, C. R. & McGarry, J. D. Int. J. Obes. relat. metab. Disord. 19, 804–810 (1995).
CAS PubMed Google Scholar - Himms-Hagen, J. FASEB J. 4, 2890–2898 (1990).
Article CAS Google Scholar - Rothwell, N. J. & Stock, M. J. Nature 281, 31–35 (1979).
Article ADS CAS Google Scholar - Kopeck'y, J. et al. J. biol. Chem. 265, 22204–22209 (1990).
CAS Google Scholar - Jequier, E. & Felber, J.-P. Bailliere's clin. Endocr. Metab. 1, 911–935 (1987).
Article CAS Google Scholar - Carneheim, C., Nedergaard, J. & Cannon, B. Am. J. Physiol. 254, E155–E161 (1988).
CAS PubMed Google Scholar - Zhang, Y. et al. Nature 372, 425–432 (1994).
Article ADS CAS Google Scholar - Chen, H. et al. Cell 84, 491–495 (1996).
Article CAS Google Scholar - Lee, G.-H. et al. Nature 379, 632–635 (1996).
Article ADS CAS Google Scholar - Chua, S. C. et al. Science 271, 994–997 (1996).
Article ADS CAS Google Scholar - Noben-Trauth, K., Naggert, J. K., North, M. A. & Nishina, P. M. Nature 380, 534–538 (1996).
Article ADS CAS Google Scholar - Friedman, J. M. & Leibel, R. L. Cell 96, 217–220 (1992).
Article Google Scholar - Lowell, B. B. et al. Nature 366, 740–742 (1993).
Article ADS CAS Google Scholar - Tecott, L. H. et al. Nature 374, 542–546 (1995).
Article ADS CAS Google Scholar - Schneider, A., Davidson, J.J., Wullrich, A. & Kilimann, M. W. Nature Genet. 5, 381–385 (1993).
Article CAS Google Scholar - Katz, E. B., Stenblt, A. E., Hatton, K., DePinho, R. & Charron, M. J. Nature 377, 151–155 (1995).
Article ADS CAS Google Scholar - Kozak, L. P., Kozak, U. C. & Clarke, G. T. Genes Dev. 5, 2256–2264 (1991).
Article CAS Google Scholar - Pelleymounter, M. A. et al. Science 269, 540–543 (1995).
Article ADS CAS Google Scholar - Halaas, J. L. et al. Science 269, 543–546 (1995).
Article ADS CAS Google Scholar - Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Science 269, 546–549 (1995).
Article ADS CAS Google Scholar - Flier, J. S. Cell 80, 15–18 (1995).
Article CAS Google Scholar - Lafontan, M. & Berlan, M. J. Lipid Res. 34, 1057–1091 (1993).
CAS PubMed Google Scholar - Arner, P. New Engl. J. Med. 333, 382–383 (1995).
Article CAS Google Scholar - Surwit, R. S. et al. Metabolism 44, 645–651 (1995).
Article CAS Google Scholar - Clegg, C. H., Cadd, G. G. & McKnight, G. S. Proc natn. Acad. Sci. U.S.A. 85, 3703–3707 (1988).
Article ADS CAS Google Scholar - Clegg, C. H., Correll, L. A., Cadd, G. G. & McKnight, G. S. J. biol. Chem. 262, 13111–13119 (1987).
CAS Google Scholar - Doskeland, S. O. & Ogreid, D. Meth. Enzym. 159, 147–150 (1988).
Article CAS Google Scholar
Author information
Authors and Affiliations
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, 98195–7750, USA
David E. Cummings, Eugene P. Brandon, Josep V. Planas, Kouros Motamed, Rejean L. Idzerda & G. Stanley McKnight
Authors
- David E. Cummings
- Eugene P. Brandon
- Josep V. Planas
- Kouros Motamed
- Rejean L. Idzerda
- G. Stanley McKnight
Rights and permissions
About this article
Cite this article
Cummings, D., Brandon, E., Planas, J. et al. Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A.Nature 382, 622–626 (1996). https://doi.org/10.1038/382622a0
- Received: 30 May 1996
- Accepted: 24 June 1996
- Issue date: 15 August 1996
- DOI: https://doi.org/10.1038/382622a0