Defective platelet activation in Gαq-deficient mice (original) (raw)

References

  1. Siess, W. Molecular mechanisms of platelet activation. Physiol. Rev. 69, 58–178 (1989).
    Article CAS Google Scholar
  2. Packham, M. A. Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharmacol. 72, 278–284 (1994).
    Article CAS Google Scholar
  3. Coller, B. S. in The Heart and Cardiovascular System (eds Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M. & Morgan, H. E.) 219–273 (Raven, New York, 1992).
    Google Scholar
  4. Shattil, S. J., Ginsberg, M. H. & Brugge, J. S. Adhesive signaling in platelets. Curr. Opin. Cell Biol. 6, 695–704 (1994).
    Article CAS Google Scholar
  5. Hourani, S. M. & Cusack, N. J. Pharmacological receptors on blood platelets. Pharmacol. Rev. 43, 243–298 (1991).
    CAS PubMed Google Scholar
  6. Shenker, A., Goldsmith, P., Unson, C. G. & Spiegel, A. M. The G protein coupled to the thromboxane A2receptor in human platelets is a member of the novel Nq family. J. Biol. Chem. 266, 9309–9313 (1991).
    CAS PubMed Google Scholar
  7. Hung, D. T., Wong, Y. H., Vu, T. K. H. & Coughlin, S. R. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenyl cyclase. J. Biol. Chem. 267, 20831–20834 (1992).
    CAS PubMed Google Scholar
  8. Ushikubi, F., Nakamura, K.-I. & Narumiya, S. Functional reconstitution of platelet thromboxane A2receptors with Gqand Gi2in phospholipid vesicles. Mol. Pharmacol. 46, 808–816 (1994).
    CAS PubMed Google Scholar
  9. Offermanns, S., Langwitz, K.-L., Spicher, K. & Shultz, G. Gproteins of the G12family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc. Natl Acad. Sci. USA 91, 504–508 (1994).
    Article ADS CAS Google Scholar
  10. Hourani, S. M. O. & Hall, D. A. Receptors for ADP on human blood platelets. Trends Pharmacol. Sci. 15, 103–108 (1994).
    Article CAS Google Scholar
  11. Hepler, J. R. & Gilman, A. G. Gproteins. Trends Biochem. Sci. 17, 383–387 (1992).
    Article CAS Google Scholar
  12. Neer, E. J. Heterotrimeric G proteins: Organizers of transmembrane signals. Cell 80, 249–257 (1995).
    Article CAS Google Scholar
  13. Lee, S. B. et al. Decreased expression of phospholipase C-β2 isozyme in human platelets with impaired function. Blood 88, 1684–1691 (1996).
    CAS PubMed Google Scholar
  14. Banno, Y., Nakashima, S., Ohzawa, M. & Nozawa, Y. Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets. J. Biol. Chem. 271, 14989–14994 (1996).
    Article CAS Google Scholar
  15. Camps, M. et al. Isozyme-selective stimulation of phospholipase C-β2 by G-protein βγ subunits. Nature 360, 684–686 (1992).
    Article ADS CAS Google Scholar
  16. Katz, A., Wu, D. & Simon, M. I. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 360, 686–689 (1992).
    Article ADS CAS Google Scholar
  17. Park, D., Jhon, D. Y., Lee, C. W. & Rhee, S. G. Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4576 (1993).
    CAS Google Scholar
  18. Smrcka, A. V. & Sternweis, P. C. Regulation of phospholipase C by G proteins. J. Biol. Chem. 268, 9667–9674 (1993).
    CAS Google Scholar
  19. Exton, J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol. 36, 481–509 (1996).
    Article CAS Google Scholar
  20. Milligan, G., Mullaney, I. & McCallum, J. F. Distribution and relative levels of expression of the phosphoinositidase-C-linked G-proteins Gqα and G11α: absence of G11α in human platelets and haemopoietically derived cell lines. Biochim. Biophys. Acta 1179, 208–212 (1993).
    Article CAS Google Scholar
  21. Johnson, G. J., Leis, L. A. & Dunlop, P. C. Specificity of Gαqand Gα11gene expression in platelets and erythrocytes. Biochem. J. 318, 1023–1031 (1996).
    Article CAS Google Scholar
  22. Offermanns, S. et al. Neuron (submitted).
  23. Rosenblum, W. I., Nelson, G. H., Cockrell, C. S. & Ellis, E. F. Some properties of mouse platelets. Thromb. Res. 30, 347–355 (1983).
    Article CAS Google Scholar
  24. Bearer, E. L. Cytoskeletal domains in the activated platelet. Cell Motil. Cytoskel. 30, 50–66 (1995).
    Article CAS Google Scholar
  25. Suh, T. T. et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 9, 2020–2033 (1995).
    Article CAS Google Scholar
  26. McMurray, J. & Rankin, A. Treatment of myocardial infarction, unstable angina, and angina pectoris. Br. Med. J. 309, 1343–1350 (1994).
    Article CAS Google Scholar
  27. DiMinno, G. & Silver, M. J. Mouse antithrombotic assay: A simple method for the evaluation of antithrombotic agents in vivo. Potentiation of antithrombotic activity by ethyl alcohol. J. Pharmacol. Exp. Ther. 255, 57–60 (1983).
    Google Scholar
  28. Buhl, A. M., Johnson, N. L., Dhanasekaran, N. & Johnson, G. L. Gα12and Gα13stimulate Rho-dependent stress fibre formation and focal adhesion assembly. J. Biol. Chem. 270, 24731–24634 (1995).
    Google Scholar
  29. Sage, S. O. in Platelets, a Practical Approach (eds Watson, S. P. & Auth, K. S.) 67–90 (IRL, Oxford, 1995).
    Google Scholar
  30. Lawrence, W. H., Howell, R. D. & Gollumudi, R. Antiplatelet activity of nipecotamides in experimental thrombosis in mice. J. Pharmacol. Sci. 83, 222–225 (1994).
    Article CAS Google Scholar

Download references