Defective platelet activation in Gαq-deficient mice (original) (raw)
References
Siess, W. Molecular mechanisms of platelet activation. Physiol. Rev.69, 58–178 (1989). ArticleCAS Google Scholar
Packham, M. A. Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharmacol.72, 278–284 (1994). ArticleCAS Google Scholar
Coller, B. S. in The Heart and Cardiovascular System (eds Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M. & Morgan, H. E.) 219–273 (Raven, New York, 1992). Google Scholar
Shattil, S. J., Ginsberg, M. H. & Brugge, J. S. Adhesive signaling in platelets. Curr. Opin. Cell Biol.6, 695–704 (1994). ArticleCAS Google Scholar
Hourani, S. M. & Cusack, N. J. Pharmacological receptors on blood platelets. Pharmacol. Rev.43, 243–298 (1991). CASPubMed Google Scholar
Shenker, A., Goldsmith, P., Unson, C. G. & Spiegel, A. M. The G protein coupled to the thromboxane A2receptor in human platelets is a member of the novel Nq family. J. Biol. Chem.266, 9309–9313 (1991). CASPubMed Google Scholar
Hung, D. T., Wong, Y. H., Vu, T. K. H. & Coughlin, S. R. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenyl cyclase. J. Biol. Chem.267, 20831–20834 (1992). CASPubMed Google Scholar
Ushikubi, F., Nakamura, K.-I. & Narumiya, S. Functional reconstitution of platelet thromboxane A2receptors with Gqand Gi2in phospholipid vesicles. Mol. Pharmacol.46, 808–816 (1994). CASPubMed Google Scholar
Offermanns, S., Langwitz, K.-L., Spicher, K. & Shultz, G. Gproteins of the G12family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc. Natl Acad. Sci. USA91, 504–508 (1994). ArticleADSCAS Google Scholar
Hourani, S. M. O. & Hall, D. A. Receptors for ADP on human blood platelets. Trends Pharmacol. Sci.15, 103–108 (1994). ArticleCAS Google Scholar
Hepler, J. R. & Gilman, A. G. Gproteins. Trends Biochem. Sci.17, 383–387 (1992). ArticleCAS Google Scholar
Neer, E. J. Heterotrimeric G proteins: Organizers of transmembrane signals. Cell80, 249–257 (1995). ArticleCAS Google Scholar
Lee, S. B. et al. Decreased expression of phospholipase C-β2 isozyme in human platelets with impaired function. Blood88, 1684–1691 (1996). CASPubMed Google Scholar
Banno, Y., Nakashima, S., Ohzawa, M. & Nozawa, Y. Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets. J. Biol. Chem.271, 14989–14994 (1996). ArticleCAS Google Scholar
Camps, M. et al. Isozyme-selective stimulation of phospholipase C-β2 by G-protein βγ subunits. Nature360, 684–686 (1992). ArticleADSCAS Google Scholar
Katz, A., Wu, D. & Simon, M. I. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature360, 686–689 (1992). ArticleADSCAS Google Scholar
Park, D., Jhon, D. Y., Lee, C. W. & Rhee, S. G. Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem.268, 4573–4576 (1993). CAS Google Scholar
Smrcka, A. V. & Sternweis, P. C. Regulation of phospholipase C by G proteins. J. Biol. Chem.268, 9667–9674 (1993). CAS Google Scholar
Exton, J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol.36, 481–509 (1996). ArticleCAS Google Scholar
Milligan, G., Mullaney, I. & McCallum, J. F. Distribution and relative levels of expression of the phosphoinositidase-C-linked G-proteins Gqα and G11α: absence of G11α in human platelets and haemopoietically derived cell lines. Biochim. Biophys. Acta1179, 208–212 (1993). ArticleCAS Google Scholar
Johnson, G. J., Leis, L. A. & Dunlop, P. C. Specificity of Gαqand Gα11gene expression in platelets and erythrocytes. Biochem. J.318, 1023–1031 (1996). ArticleCAS Google Scholar
Offermanns, S. et al. Neuron (submitted).
Rosenblum, W. I., Nelson, G. H., Cockrell, C. S. & Ellis, E. F. Some properties of mouse platelets. Thromb. Res.30, 347–355 (1983). ArticleCAS Google Scholar
Bearer, E. L. Cytoskeletal domains in the activated platelet. Cell Motil. Cytoskel.30, 50–66 (1995). ArticleCAS Google Scholar
Suh, T. T. et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev.9, 2020–2033 (1995). ArticleCAS Google Scholar
McMurray, J. & Rankin, A. Treatment of myocardial infarction, unstable angina, and angina pectoris. Br. Med. J.309, 1343–1350 (1994). ArticleCAS Google Scholar
DiMinno, G. & Silver, M. J. Mouse antithrombotic assay: A simple method for the evaluation of antithrombotic agents in vivo. Potentiation of antithrombotic activity by ethyl alcohol. J. Pharmacol. Exp. Ther.255, 57–60 (1983). Google Scholar
Buhl, A. M., Johnson, N. L., Dhanasekaran, N. & Johnson, G. L. Gα12and Gα13stimulate Rho-dependent stress fibre formation and focal adhesion assembly. J. Biol. Chem.270, 24731–24634 (1995). Google Scholar
Sage, S. O. in Platelets, a Practical Approach (eds Watson, S. P. & Auth, K. S.) 67–90 (IRL, Oxford, 1995). Google Scholar
Lawrence, W. H., Howell, R. D. & Gollumudi, R. Antiplatelet activity of nipecotamides in experimental thrombosis in mice. J. Pharmacol. Sci.83, 222–225 (1994). ArticleCAS Google Scholar