p73 is a human p53-related protein that can induce apoptosis (original) (raw)

References

  1. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).
    Article ADS CAS Google Scholar
  2. Levine, A. J., Momand, J. & Finlay, C. A. The p53 tumour supressor gene. Nature 351, 453–456 (1991).
    Article ADS CAS Google Scholar
  3. Haffner, R. & Oren, M. p53: biochemical properties and biological effects of p53. Curr. Opin. Genet. Dev. 5, 84–90 (1995).
    Article CAS Google Scholar
  4. Kaghad, M. et al. Monoallelically expressed gene related to p53 at the neuroblastoma suppressor-1 locus. Cell (in the press).
  5. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).
    Article ADS CAS Google Scholar
  6. Versteeg, R. et al. 1p36: every subband a suppressor? Eur. J. Cancer 31 A, 538–541 (1995).
    Article Google Scholar
  7. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–829 (1992).
    Article ADS CAS Google Scholar
  8. Diller, L. et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10, 5772–5781 (1990).
    Article CAS Google Scholar
  9. Diller, L. et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55, 2910–2919 (1995).
    Google Scholar
  10. Pietenpol, J. A. et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl Acad. Sci. USA 91, 1998–2002 (1994).
    Article ADS CAS Google Scholar
  11. Takeda, O. et al. There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chrom. Cancer 10, 30–39 (1994).
    Article CAS Google Scholar
  12. Caron, H. et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Genet. 4, 187–191 (1993).
    Article CAS Google Scholar
  13. Hosoi, G. et al. Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73, 3087–3093 (1994).
    Article CAS Google Scholar
  14. Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 53, 5269–5273 (1993).
    CAS PubMed Google Scholar
  15. Heald, R., McLoughlin, M. & McKeon, F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74, 463–474 (1993).
    Article CAS Google Scholar
  16. Chen, X., Farmer, G., Zhu, H., Prywes, R. & Prives, C. Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev. 7, 1837–1849 (1993). Erratum, Genes Dev. 7, 2652 (1993).
    Article CAS Google Scholar
  17. Flemington, E. K., Lytle, J. P., Cayrol, C., Borras, A. M. & Speck, S. H. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol. Cell. Biol. 14, 3041–3052 (1994).
    Article CAS Google Scholar
  18. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).
    Article CAS Google Scholar
  19. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).
    Article ADS CAS Google Scholar
  20. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).
    Article CAS Google Scholar
  21. Graham, F. L. & Eb, A. J. v. d. Anew technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).
    Article CAS Google Scholar
  22. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).
    Article CAS Google Scholar
  23. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).
    Article CAS Google Scholar
  24. Sellers, W. R., Rodgers, J. W. & Kaelin, W. G. Apotent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl Acad. Sci. USA 92, 11544–11548 (1995).
    Article ADS CAS Google Scholar
  25. Qin, X. Q., Chittenden, T., Livingston, D. M. & Kaelin, W. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).
    Article CAS Google Scholar

Download references