Role of CBP/P300 in nuclear receptor signalling (original) (raw)

Nature volume 383, pages 99–103 (1996)Cite this article

Abstract

THE nuclear receptor superfamily includes receptors for steroids, retinoids, thyroid hormone and vitamin D, as well as many related proteins1,3. An important feature of the action of the lipophilic hormones and vitamins is that the maintenance of homeostatic function requires both intrinsic positive and negative regulation4,5. Here we provide in vitro and in vivo evidence that identifies the CREB-binding protein (CBP) and its homologue P300 (refs 6, 7) as cofactors mediating nuclear-receptor-activated gene transcription. The role of CBP/P300 in the transcrip-tional response to cyclic AMP, phorbol esters, serum, the lipophilic hormones and as the target of the E1A oncoprotein suggests they may serve as integrators of extracellular and intracellular signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Mangelsdorf, D. J. et al. Cell 83, 835–839 (1995).
    Article CAS Google Scholar
  2. Evans, R. M. Science 240, 889–895 (1988).
    Article ADS CAS Google Scholar
  3. Green, S. & Chambon, P. Trends. Genet. 4, 309–314 (1988).
    Article CAS Google Scholar
  4. Mangelsdorf, D. J. & Evans, R. M. Cell 83, 841–850 (1995).
    Article CAS Google Scholar
  5. Casanova, J. et al. Mol. Cell. Biol. 14, 5756–5765 (1994).
    Article CAS Google Scholar
  6. Chrivia, J. C. et al. Nature 365, 855–859 (1993).
    Article ADS CAS Google Scholar
  7. Eckner, R. et al. Genes Dev. 8, 869–884 (1994).
    Article CAS Google Scholar
  8. Chen, J. D. & Evans, R. M. Nature 377, 454–457 (1995).
    Article ADS CAS Google Scholar
  9. Hörlein, A. J. et al. Nature 377, 397–404 (1995).
    Article ADS Google Scholar
  10. Oñate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Science 270, 1354–1357 (1995).
    Article ADS Google Scholar
  11. Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A. & Moore, D. D. Nature 374, 91–94 (1995).
    Article ADS CAS Google Scholar
  12. vom Baur, E. et al. EMBO J. 15, 110–124 (1995).
    Article Google Scholar
  13. Cavaillès, V. et al. EMBO J. 14, 3741–3751 (1995).
    Article Google Scholar
  14. Halachmi, S. et al. Science 264, 1455–1458 (1994).
    Article ADS CAS Google Scholar
  15. Le Douarin, B. et al. EMBO J. 14, 2020–2033 (1995).
    Article CAS Google Scholar
  16. Schüle, R. & Evans, R. M. Trends Genet. 7, 377–381 (1991).
    Article Google Scholar
  17. Arias, J. et al. Nature 370, 226–229 (1994).
    Article ADS CAS Google Scholar
  18. Hill, C. S. & Treisman, R. Cell 80, 199–211 (1995).
    Article CAS Google Scholar
  19. Schulman, I. G., Chakravarti, D., Juguilon, H., Romo, A. & Evans, R. M. Proc. Natl Acad. Sci. USA 92, 8288–8292 (1995).
    Article ADS CAS Google Scholar
  20. Parker, D. et al. Mol. Cell. Biol. 16, 694–703 (1996).
    Article CAS Google Scholar
  21. Forman, B. M., Umesono, K., Chen, J. & Evans, R. M. Cell 81, 541–550 (1995).
    Article CAS Google Scholar
  22. Forman, B. M. et al. Cell 81, 687–693 (1995).
    Article CAS Google Scholar
  23. Umesono, K., Murakami, K. K., Thompson, C. C. & Evans, R. M. Cell 65, 1255–1266 (1991).
    Article CAS Google Scholar
  24. Hollenberg, S. M., Giguère, V., Segui, P. & Evans, R. M. Cell 49, 39–46 (1987).
    Article CAS Google Scholar
  25. Kamei, Y. et al. Cell 85, 403–414 (1996).
    Article CAS Google Scholar
  26. Kwok, R. P. S. et al. Nature 380, 642–646 (1996).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. The Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
    Debabrata Chakravarti, Vickie J. LaMorte, Michael C. Nelson, Ira G. Schulman, Henry Juguilon & Ronald M. Evans
  2. The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
    Toshihiro Nakajima & Marc Montminy
  3. The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
    Ronald M. Evans

Authors

  1. Debabrata Chakravarti
    You can also search for this author inPubMed Google Scholar
  2. Vickie J. LaMorte
    You can also search for this author inPubMed Google Scholar
  3. Michael C. Nelson
    You can also search for this author inPubMed Google Scholar
  4. Toshihiro Nakajima
    You can also search for this author inPubMed Google Scholar
  5. Ira G. Schulman
    You can also search for this author inPubMed Google Scholar
  6. Henry Juguilon
    You can also search for this author inPubMed Google Scholar
  7. Marc Montminy
    You can also search for this author inPubMed Google Scholar
  8. Ronald M. Evans
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Chakravarti, D., LaMorte, V., Nelson, M. et al. Role of CBP/P300 in nuclear receptor signalling.Nature 383, 99–103 (1996). https://doi.org/10.1038/383099a0

Download citation

This article is cited by