Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice (original) (raw)

Nature volume 384, pages 266–270 (1996)Cite this article

Abstract

MICE that have mutations in both myogenic transcription factors Myf-5 and MyoD totally lack skeletal muscle fibres and their precursor myoblasts1, whereas with either mutation alone, muscle is present2,3. Skeletal muscle in the vertebrate body is derived from epithelial somites that respond to environmental signals to form the dorsal epithelial dermomyotome (dermis, muscle) and ventral mesenchymal sclerotome (axial skeleton, ribs) 4,5. The first muscle, the myotome, forms centrally in the somite, when only myf-5 is programming myogenesis. By targeting the nlacZ reporter gene into the myf-5 locus, we demonstrate that β-galactosidase muscle progenitor cells are present in the dermomyotome of myf-5 null embryos, and that they undergo a normal epithelial-mesenchymal transition; however, they migrate aberrantly. Dorsally, they accumulate under the ectoderm and express a non-muscle dermal marker, Dermo-1. Ventrally, β-galactosidase+ cells also fail to localize correctly, express a cartilage marker scleraxis, and are subsequently found in ribs. Therefore Myf-5 protein is necessary for cells to respond correctly to positional cues in the embryo and to adopt their myogenic fate. In its absence, muscle progenitors, having activated myf-5, remain multipotent and differentiate into other somitic derivatives according to their local environment.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Rudnicki, M. A. et al. Cell 75, 1351–1359 (1993).
    Article CAS Google Scholar
  2. Braun, T., Rudnicki, M. A., Arnold, H.-H. & Jaenisch, R. Cell 71, 369–382 (1992).
    Article CAS Google Scholar
  3. Rudnicki, M. A., Braun, T., Hinuma, S. & Jaenisch, R. Cell 71, 383–390 (1992).
    Article CAS Google Scholar
  4. Cossu, G., Tajbakhsh, S. & Buckingham, M. Trends Genet. 12, 218–223 (1996).
    Article CAS Google Scholar
  5. Christ, B. & Ordahl, C. P. Anatomy Embryol. 191, 381–396 (1995).
    Article CAS Google Scholar
  6. Ott, M.-O., Bober, E., Lyons, G., Arnold, H. & Buckingham, M. Development 111, 1097–1107 (1991).
    CAS Google Scholar
  7. Buckingham, M. Trends Genet. 8, 144–149 (1992).
    Article CAS Google Scholar
  8. Tosney, K. W., Dehnbostel, D. B. & Erickson, C. A. Dev. Biol. 163, 389–406 (1994).
    Article CAS Google Scholar
  9. Li, L., Cserjesi, P. & Olson, E. N. Dev. Biol. 172, 280–292 (1995).
    Article CAS Google Scholar
  10. Cserjesi, P. et al. Development 121, 1099–1110 (1995).
    CAS PubMed Google Scholar
  11. Grass, S., Arnold, H. H. & Braun, T. Development 122, 141–150 (1996).
    CAS PubMed Google Scholar
  12. Tajbakhsh, S. & Buckingham, M. E. Proc. Natl Acad. Sci. USA 91, 747–751 (1994).
    Article ADS CAS Google Scholar
  13. Siegfried, E. & Perrimon, N. Bioessays 16, 395–404 (1994).
    Article CAS Google Scholar
  14. Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y. P. & Maas, R. L. Proc. Natl Acad. Sci. USA 93, 4213–4218 (1996).
    Article ADS CAS Google Scholar
  15. Yang, X.-M., Vogan, K., Gros, P. & Park, M. Development 122, 2163–2171 (1996).
    CAS PubMed Google Scholar
  16. Hay, E. D. Curr. Opin. Cell Biol. 5, 1029–1035 (1993).
    Article CAS Google Scholar
  17. Gurdon, J. B. Nature 336, 772–774 (1988).
    Article ADS CAS Google Scholar
  18. Cossu, G., Kelly, R., Di Donna, S., Vivarelli, E. & Buckingham, M. Proc. Natl Acad. Sci. USA 92, 2254–2258 (1995).
    Article ADS CAS Google Scholar
  19. Godsave, S. F. & Slack, J. M. Development 111, 523–530 (1991).
    CAS Google Scholar
  20. Rong, P. M., Teillet, M. A., Ziller, C. & Le Douarin, N. M. Development 115, 657–672 (1992).
    CAS Google Scholar
  21. Bober, E. et al. Development 120, 3073–3082 (1994).
    CAS PubMed Google Scholar
  22. Pownall, M. E., Strunk, K. E. & Emerson, C. P. Jr Development 122, 1475–1488 (1996).
    CAS PubMed Google Scholar
  23. Tajbakhsh, S. et al. Dev. Dyn. 206, 291–300 (1996).
    Article CAS Google Scholar
  24. Magin, T. M., McWhir, J. & Melton, D. W. Nucleic Acids Res. 20, 3795–3796 (1992).
    Article CAS Google Scholar
  25. Tajbakhsh, S. & Buckingham, M. E. Development 121, 4077–4083 (1995).
    CAS PubMed Google Scholar
  26. Tajbakhsh, S. & Houzelstein, D. Trends Genet. 11, 42 (1995).
    Article CAS Google Scholar
  27. Yagi, T. et al. Proc. Natl Acad. Sci. USA 87, 9918–9922 (1990).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Unité de Génétique Moléculaire du Développement, CNRS URA1947, Départment de Biologie Moléculaire, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris, Cedex 15, France
    S. Tajbakhsh, D. Rocancourt & M. Buckingham

Authors

  1. S. Tajbakhsh
    You can also search for this author inPubMed Google Scholar
  2. D. Rocancourt
    You can also search for this author inPubMed Google Scholar
  3. M. Buckingham
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Tajbakhsh, S., Rocancourt, D. & Buckingham, M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice.Nature 384, 266–270 (1996). https://doi.org/10.1038/384266a0

Download citation