Crystal structure of the nucleosome core particle at 2.8 Å resolution (original) (raw)

References

  1. Kornberg, R. D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).
    Article CAS Google Scholar
  2. McGhee, J. D. & Felsenfeld, G. Nucleosome structure. Annu. Rev. Biochem. 49, 1115–1156 (1980).
    Article CAS Google Scholar
  3. Widom, J. Toward a unified model of chromatin folding. Annu. Rev. Biophys. Biophys. Chem. 18, 365–395 (1989).
    Article CAS Google Scholar
  4. van Holde, K. E. Chromatin(Springer, New York, (1988).
    Google Scholar
  5. Blank, T. A. & Becker, P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J. Mol. Biol. 260, 1–8 (1996).
    Article CAS Google Scholar
  6. Wallrath, L. L., Lu, Q., Granok, H. & Elgin, S. C. R. Architectural variations of inducible eukaryotic promoters: Preset and remodeling chromatin structures. BioEssays 16, 165–170 (1994).
    Article CAS Google Scholar
  7. Flaus, A., Luger, K., Tan, S. & Richmond, T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc. Natl Acad. Sci. USA 93, 1370–1375 (1996).
    Article ADS CAS Google Scholar
  8. Travers, A. A. DNA bending and nucleosome positioning. Trends Biochem. Sci. 12, 108–112 (1987).
    Article ADS CAS Google Scholar
  9. Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′ LTR sequences. J. Mol. Biol.(in the press).
  10. Wasylyk, B. & Chambon, P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur. J. Biochem. 98, 317–327 (1979).
    Article CAS Google Scholar
  11. Grunstein, M. Histone function in transcription. Annu. Rev. Cell Biol. 6, 643–678 (1990).
    Article CAS Google Scholar
  12. Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63, 265–297 (1994).
    Article CAS Google Scholar
  13. Polach, K. J. & Widom, J. Amodel for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).
    Article CAS Google Scholar
  14. Felsenfeld, G. Chromatin unfolds. Cell 86, 13–19 (1996).
    Article CAS Google Scholar
  15. Schild, C., Claret, F. X., Wahli, W. & Wolffe, A. P. Anucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin-B1 promoter in vitro. EMBO J. 12, 423–433 (1993).
    Article CAS Google Scholar
  16. Truss, M.et al. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14, 1737–1751 (1995).
    Article CAS Google Scholar
  17. Rhodes, D., Brown, R. S. & Klug, A. Meth. Enzymol. 420–428 (Academic, San Diego, (1989).
    Google Scholar
  18. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).
    Article ADS CAS Google Scholar
  19. Finch, J. T. et al. X-ray and electron microscope studies on the nucleosome structure. FEBS Lett. 51, 193–197 (1979).
    Google Scholar
  20. Arents, G., Burlingame, R. W., Wang, B.-C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA 88, 10148–10152 (1991).
    Article ADS CAS Google Scholar
  21. Richmond, T. J., Rechsteiner, T. & Luger, K. Studies of nucleosome structure. Cold Spring Harbor Symp. Quant. Biol. LVIII, 265–272 (1993).
    Article Google Scholar
  22. Richmond, T. J., Searles, M. A. & Simpson, R. T. Crystals of a nucleosome core particle containing defined sequence DNA. J. Mol. Biol. 199, 161–170 (1988).
    Article CAS Google Scholar
  23. Luger, K., Rechsteiner, T. J., Flaus, A., Waye, M. M. Y. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol.(in the press).
  24. Camerini-Otero, R. D. & Felsenfeld, G. Sulfhydryl modificaiton of nucleosome. Proc. Natl Acad. Sci. USA 74, 5519–5523 (1977).
    Article ADS CAS Google Scholar
  25. Harp, J. M. et al. X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles. Acta Crystallogr. D 52, 283–288 (1996).
    Article CAS Google Scholar
  26. Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).
    Article CAS Google Scholar
  27. Rhodes, D. & Klug, A. Sequence-dependent helical periodicity of DNA. Nature 292, 378–380 (1981).
    Article ADS CAS Google Scholar
  28. Dickerson, R. E., Goodsell, D. S. & Neidle, S. “⃛ The tyranny of the lattice⃛”. Proc. Natl Acad. Sci. USA 91, 3579–3583 (1994).
    Article ADS CAS Google Scholar
  29. Travers, A. A. & Klug, A. in DNA Topology and its Biological Effects(eds Cozzarelli, N. R.&Wang, J. C.) 57–106 (Cold Spring Harbor Press, Cold Spring Harbor, New York, (1990).
    Google Scholar
  30. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992).
    Article CAS Google Scholar
  31. Pruss, D., Bushmann, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA 91, 5913–5917 (1994).
    Article ADS CAS Google Scholar
  32. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).
    Article CAS Google Scholar
  33. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).
    Article CAS Google Scholar
  34. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).
    Article CAS Google Scholar
  35. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).
    Article CAS Google Scholar
  36. Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl Acad. Sci. USA 73, 1897–1901 (1976).
    Article ADS CAS Google Scholar
  37. Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979).
    Article CAS Google Scholar
  38. Widom, J. & Klug, A. Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples. Cell 43, 207–213 (1985).
    Article CAS Google Scholar
  39. Graziano, V., Gerchman, S. E., Schneider, D. K. & Ramakrishnan, V. Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368, 351–354 (1994).
    Article ADS CAS Google Scholar
  40. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).
    Article CAS Google Scholar
  41. Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J. Mol. Biol. 255, 187–203 (1996).
    Article CAS Google Scholar
  42. Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316–322 (1996).
    Article ADS CAS Google Scholar
  43. Yang, T. P., Hansen, S. K., Oishi, K. K., Ryder, O. A. & Hamkalo, B. A. Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc. Natl Acad. Sci. USA 79, 6593–6597 (1982).
    Article ADS CAS Google Scholar
  44. O'Halloran, T. V., Lippard, S. J., Richmond, T. J. & Klug, A. Multiple heavy-atom reagents for macromolecular X-ray structure determination. Application to the nucleosome core particle. J. Mol. Biol. 194, 705–712 (1987).
    Article CAS Google Scholar
  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  46. Brünger, A. X-PLOR v3.1 Manual(Yale Univ. Press, New Haven, (1992).
    Google Scholar
  47. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).
    Article CAS Google Scholar
  48. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar
  49. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).
    Article Google Scholar
  50. Böhm, L. & Crane-Robinson, C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci. Rep. 4, 365–386 (1984).
    Article Google Scholar
  51. Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugated-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).
    Article ADS CAS Google Scholar

Download references