The magnetic field and internal structure of Ganymede (original) (raw)

Nature volume 384, pages 544–545 (1996)Cite this article

Abstract

BEFORE the recent fly-bys of Ganymede by the Galileo spacecraft, viable models of the internal structure of Jupiter's largest moon ranged from a uniform mixture of rock and ice to a differentiated body with a rocky core and an icy mantle1. Analysis of the Doppler shift of radio signals from Galileo has now shown that Ganymede is strongly differentiated with a relatively dense core surrounded by a thick shell of ice2. Other instruments have revealed that Ganymede has an intrinsic magnetic field3,4, which is aligned approximately antiparallel to Jupiter's magnetic field. Here we argue that these results imply that Ganymede has an outer silicate core surrounding a liquid (or partially liquid) inner core of iron or iron sulphide, and that the magnetic field is generated by dynamo action within this metallic core. lo also appears to have an intrinsic magnetic field5,6 (antiparallel to that of Jupiter), implying that it too has a metallic core7 in which the field is generated either by dynamo action or by magneto-convection.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Schubert, G., Spohn, T. & Reynolds, R. T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 224–292 (University Arizona Press, Tucson, 1986).
    Google Scholar
  2. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G. & Moore, W. B. Nature 384, 541–543 (1996).
    Article ADS CAS Google Scholar
  3. Kivelson, M. G. et al. Nature 384, 537–541 (1996).
    Article ADS CAS Google Scholar
  4. Gurnett, D. A., Kurth, W. S., Roux, A., Bolton, S. J. & Kennel, C. F. Nature 384, 535–537 (1996).
    Article ADS CAS Google Scholar
  5. Kivelson, M. G. et al. Science 273, 337–340 (1996).
    Article ADS CAS Google Scholar
  6. Kivelson, M. G. et al. Science 274, 396–398 (1996).
    Article ADS CAS Google Scholar
  7. Anderson, J. D., Sjogren, W. L. & Schubert, G. Science 272, 709–712 (1996).
    Article ADS CAS Google Scholar
  8. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley & Sons, New York, 1982).
    Google Scholar
  9. Crary, F. J. & Bagenal, F. (abstr.) Bull. Am. Astron. Soc. 28, 1075 (1996).
    ADS Google Scholar
  10. Peale, S. J., Cassen, P. & Reynolds, R. T. Science 203, 892–894 (1979).
    Article ADS CAS Google Scholar
  11. Segatz, M., Spohn, T., Ross, M. N. & Schubert, G. Icarus 75, 187–206 (1988).
    Article ADS Google Scholar
  12. Veeder, G. J., Matson, D. L., Johnson, T. V., Blaney, D. L. & Gougen, J. D. J. Geophys. Res. 99, 17095–17162 (1994).
    Article ADS Google Scholar
  13. Cheng, A. F. & Paranicus, C. Geophys. Res. Lett. 23, 2879–2882 (1996).
    Article ADS Google Scholar
  14. Ross, M. N., Schubert, G., Spohn, T. & Gaskell, R. W. Icarus 85, 309–325 (1990).
    Article ADS Google Scholar
  15. Levy, E. H. Proc. Lunar Planet Sci. Conf. 10, 2335–2342 (1979).
    ADS Google Scholar
  16. Stevenson, D. J. Rep. Prog. Phys. 46, 555–620 (1983).
    Article ADS CAS Google Scholar
  17. Moore, W. B. & Schubert, G. (abstr.) Bull. Am. Astron. Soc. 28, 1139 (1996).
    ADS Google Scholar
  18. Bloxham, J. & Jackson, A. Rev. Geophys. 29, 97–120 (1991).
    Article ADS Google Scholar
  19. Khurana, K. K. J. Geophys. Res. (in the press).
  20. Frank, L. A. et al. Science 274, 394–395 (1996).
    Article ADS CAS Google Scholar
  21. Wienbruch, V. & Spohn, T. Planet. Space Sci. 43, 1045–1057 (1995).
    Article ADS Google Scholar
  22. Sterrett, K. F., Klement, W. Jr & Kennedy, G. C. J. Geophys. Res. 70, 1979–1984 (1965).
    Article ADS CAS Google Scholar
  23. Usselman, T. M. Am. J. Sci. 275, 278–290 (1975).
    Article ADS CAS Google Scholar
  24. McKinnon, W. B. (abstr.) Bull. Am. Astron. Soc. 28, 1076 (1996).
    ADS Google Scholar
  25. Malhotra, R. Icarus 94, 399–412 (1991).
    Article ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Earth and Space Sciences, University of California, Los Angeles, California, 90095, USA
    Gerald Schubert & Margaret G. Kivelson
  2. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, 90095, USA
    Gerald Schubert & Margaret G. Kivelson
  3. Department of Mathematics, University of Exeter, Exeter, EX4 4QJ, UK
    Keke Zhang
  4. et Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA
    John D. Anderson

Authors

  1. Gerald Schubert
    You can also search for this author inPubMed Google Scholar
  2. Keke Zhang
    You can also search for this author inPubMed Google Scholar
  3. Margaret G. Kivelson
    You can also search for this author inPubMed Google Scholar
  4. John D. Anderson
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Schubert, G., Zhang, K., Kivelson, M. et al. The magnetic field and internal structure of Ganymede.Nature 384, 544–545 (1996). https://doi.org/10.1038/384544a0

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.