Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy (original) (raw)
References
Hollinger, F. B. Hepatitis B virus. In Fields Virology 3rd edn (eds Fields, B. N. et al.) 2738–2308 (Lippincott-Raven, Philadelphia, 1996). Google Scholar
Nassal, M. & Schaller, H. Hepatitis B virus nucleocapsid assembly. In Virus Strategies (eds Doefler, W. & Bohm, P.) 41–75 (VCH, Weinheim, 1993). Google Scholar
Wingfield, P. T., Stahl, S. J., Williams, R. W. & Steven, A. C. Hepatitis core antigen produced in Escherichia coli: subunit composition, conformational analysis, and in vitro capsid assembly. Biochemistry34, 4919–4932 (1995). ArticleCASPubMed Google Scholar
Crowther, R. A. et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell77, 943–950 (1994). ArticleCASPubMed Google Scholar
Kenney, J. M., von Bonsdorff, C. H., Nassal, M. & Fuller, S. D. Evolutionary conservation in the hepatitis B virus core structure: comparison of human and duck cores. Structure3, 1009–1019 (1995). ArticleCASPubMed Google Scholar
Zlotnick, A. et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry35, 7412–7421 (1996). ArticleCASPubMed Google Scholar
Zemlin, F. Expected contribution of the field-emission gun to high-resolution transmission electron microscopy. Micron25, 223–226 (1994). Article Google Scholar
Conway, J. F. et al. The effects of radiation damage on the structure of frozen hydrated HSV-1 capsids. J. Struct. Biol.111, 222–233 (1993). ArticleCASPubMed Google Scholar
van Heel, M. Similarity measures between images. Ultra microscopy21, 95–100 (1987). Article Google Scholar
Winkelmann, D. A., Baker, T. S. & Rayment, I. Three-dimensional structure of myosin subfragment-1 from electron microscopy of sectioned crystals. J. Cell Biol.114, 701–713 (1991). ArticleCASPubMed Google Scholar
Chothia, C. Principles that determine the structure of proteins. Annu. Rev. Biochem.53, 537–572 (1984). ArticleCASPubMed Google Scholar
Yu, M. S., Miller, R. H., Emerson, S. & Purcell, R. H. A. A hydrophobic heptad repeat of the core protein of woodchuck hepatitis-virus is required for capsid assembly. J. Virol.70, 7085–7091 (1996). CASPubMedPubMed Central Google Scholar
Salfeld, J., Pfaff, E., Noah, M. & Schaller, H. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J. Virol.63, 798–808 (1989). CASPubMedPubMed Central Google Scholar
Bringas, R. Folding and assembly of hepatitis B virus core protein. A new model proposal. J. Struct. Biol. (in the press).
Rossmann, M. G. & Johnson, J. E. Icosahedral RNA virus structure. Annu. Rev. Biochem.58, 533–573 (1989). ArticleCASPubMed Google Scholar
Bamford, J. K., Bamford, D. H., Li, T. & Thomas, G. J. Jr. Structural studies of the enveloped dsRNA bacteriophage phi 6 of Pseudomonas syringae by Raman spectrosocpy. II. Nucleocapsid structure and thermostability of the virion, nucleocapsid and polymerase complex. J. Mol. Biol.230, 473–482 (1993). ArticleCASPubMed Google Scholar
Momany, C. et al. Crystal structure of dimeric HIV-1 capsid protein. Nature Struct. Biol.3, 763–770 (1996). ArticleCASPubMed Google Scholar
Rao, Z. et al. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature378, 743–747 (1995). ArticleADSCASPubMed Google Scholar
Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA88, 10148–10152 (1991). ArticleADSCASPubMedPubMed Central Google Scholar
Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature380, 316–322 (1996). ArticleADSCASPubMed Google Scholar
Banner, D. W., Kokkinidis, M. & Tsernoglou, D. Structure of the ColEl rop protein at 1.7 Å resolution. J. Mol. Biol.196, 657–675 (1987). ArticleCASPubMed Google Scholar
Milburn, M. V. et al. A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. Nature363, 172–176 (1993). ArticleADSCASPubMed Google Scholar
Unwin, P. N. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol.94, 425–440 (1975). ArticleCASPubMed Google Scholar
Jeng, T. W., Crowther, R. A., Stubbs, G. & Chiu, W. Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. J. Mol. Biol.205, 251–257 (1989). ArticleCASPubMed Google Scholar
Morgan, D. G., Owen, C., Melanson, L. A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: packing of the alpha-helices. J. Mol. Biol.249, 88–110 (1995). ArticleCASPubMed Google Scholar
Booy, F. P. et al. High resolution studies of papillomavirus and herpes simplex virus (Abstract). Proc. Xlth Eur. Congr. Microscopy, Dublin (1996).
Baker, T. S. & Cheng, R. H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol.116, 120–130 (1996). ArticleCASPubMed Google Scholar
Baker, T. S., Drak, J. & Bina, M. The capsid of small papova viruses contains 72 pentameric capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40. Biophys. J.55, 243–253 (1989). ArticleCASPubMedPubMed Central Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991). Article Google Scholar