A proton-gated cation channel involved in acid-sensing (original) (raw)

References

  1. Rang, H. P., Bevan, S. & Dray, A. Chemical activation of nociceptive peripheral neurones. Br. Med. Bull. 47, 534–548 (1991).
    Article CAS Google Scholar
  2. Lindemann, B. Taste reception. Physiol. Rev. 76, 718–766 (1996).
    Article Google Scholar
  3. Krishtal, O. A. & Pidoplichko, V. I. A receptor for protons in the membrane of sensory neurons may participate in nociception. Neurosdence 6, 2599–2601 (1981).
    Article CAS Google Scholar
  4. Bevan, S. & Geppetti, P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17, 509–512 (1994).
    Article CAS Google Scholar
  5. Akaike, N., Krishtal, O. A. & Maruyama, T. Proton-induced sodium current in frog isolated dorsal root ganglion ceils. J. Neurophysiol. 63, 805–813 (1990).
    Article CAS Google Scholar
  6. Canessa, C. M., Horisberger, J. D. & Rossier, B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361, 467–470 (1993).
    Article ADS CAS Google Scholar
  7. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).
    Article ADS CAS Google Scholar
  8. Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M. & Barby, P. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 318, 95–99 (1993).
    Article CAS Google Scholar
  9. Lingueglia, E. et al. Different homologous subunits of the amiloridc-sensitive Na+ channel are differently regulated by aldosterone. J. Biol. Chem. 269, 13736–13739 (1994).
    CAS PubMed Google Scholar
  10. Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733 (1995).
    Article ADS CAS Google Scholar
  11. Waldmann, R., Champigny, G., Bassilana, F., Voilley, N. & Lazdunski, M. Molecular cloning and functional expression of a novel amiloride-sensitive Na− channel. J. Biol. Chem. 270, 27411–27414 (1995).
    Article CAS Google Scholar
  12. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).
    Article ADS CAS Google Scholar
  13. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabdits elegans. Nature 367, 467–470 (1994).
    Article ADS CAS Google Scholar
  14. Waldmann, R., Champigny, G., Voiiley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10433–10434 (1996).
    Article CAS Google Scholar
  15. Kovalchuk Yu, N., Krishtal, O. A. & Nowycky, M. C. The proton-activated inward current of rat sensory neurons includes a calcium component. Neurosci. Lett. 115, 237–242 (1990).
    Article Google Scholar
  16. Konnerth, A., Lux, H. D. & Morad, M. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J. Physiol. 386, 603–633 (1987).
    Article CAS Google Scholar
  17. Davies, N. W., Lux, H. D. & Morad, M. Site and mechanism of activation of proton-induced sodium current in chick dorsal root ganglion neurones. J. Physiol. 400, 159–187 (1988).
    Article CAS Google Scholar
  18. Korkushko, A. & Kryshtal, O. Blocking of proton-activated sodium permeability of the membranes of trigeminal ganglion neurons in the rat by organic cations. Neirofiziologiia 16, 557–561 (1984).
    CAS PubMed Google Scholar
  19. Grantyn, R., Perouansky, M., Rodriguez-Tebar, A. & Lux, H. D. Expression of depolarizing voltage- and transmitter-activated currents in neuronal precursor cells from the rat brain is preceded by a proton-activated sodium current. Dev. Brain Res. 49, 150–155 (1989).
    Article CAS Google Scholar
  20. Price, M. P., Snyder, P. M. & Welsh, M. J. Cloning and expression of a novel human brain Na− channel. J. Biol. Chem. 271, 7879–7882 (1996).
    Article CAS Google Scholar
  21. Akaike, N. & Ueno, S. Proton-induced current in neuronal cells. Prog. Neurobiol. 43, 73–83 (1994).
    Article CAS Google Scholar
  22. Krishtal, O. A., Osipchuk, Y, V., Shelest, T. N. & Smirnoff, S. V. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res. 436, 352–356 (1987).
    Article CAS Google Scholar
  23. Chesler, M. & Kaila, K. Modulation ofpH by neuronal activity. Trends Neurosci. 15, 396–402 (1992).
    Article CAS Google Scholar
  24. Bevan, S. & Yeats, J. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J. Physiol. 433, 145–161 (1991).
    Article CAS Google Scholar
  25. Lewis, C. et al. Coexpression of P2X2and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995).
    Article ADS CAS Google Scholar
  26. Barnard, E. A. The transmitter-gated channels: a range of receptor types and structures. Trends Pharmacol. Sci. 17, 305–309 (1996).
    Article CAS Google Scholar
  27. Okada, Y., Miyamoto, T. & Sato, T. Activation of a cation conductance by acetic acid in taste cells isolated from the bullfrog. J. Exp. Biol. 187, 19–32 (1994).
    CAS PubMed Google Scholar
  28. Liu, J., Schrank, B. & Waterson, R. Interaction between a putative mechanosensory membrane channel and a collagen. Science 273, 361–364 (1996).
    Article ADS CAS Google Scholar
  29. Waldmann, R., Champigny, G. & Lazdunski, M. Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function. J. Biol. Chem. 270, 11735–11737 (1995).
    Article CAS Google Scholar
  30. Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. & Barbry, P. Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269, 12981–12986 (1994).
    CAS PubMed Google Scholar

Download references