Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb (original) (raw)

References

  1. Saunders, J. W. & Gasseling, M. T. in Epithelial-Mesenchymal Interactions (eds Fleischmajer, R. & Billingham, R. E.) 78–97 (Baltimore, 1968).
    Google Scholar
  2. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975).
    Article ADS CAS PubMed Google Scholar
  3. Pautou, M. P. & Kieny, M. Interaction ec-mesodermique dans l'establissement de la polarité dorso-ventrale du pied de l'embryon de poulet. C. r. hebd Séanc. Acad. Sci., Paris D 277, 1225–1228 (1973).
    Google Scholar
  4. MacCabe, J. A., Errick, J. E. & Saunders, J. W. J. Ectodermal control of the dorso-ventral axis in the leg bud of the chick embryo. Dev. Biol. 39, 69–82 (1974).
    Article CAS PubMed Google Scholar
  5. Saunders, J. W. J. The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–404 (1948).
    Article PubMed Google Scholar
  6. Todt, W. & Fallon, J. F. Development of the apical ectodermal ridge in the chick wing bud. J. Embryol. Exp. Morphol. 80, 21–41 (1984).
    CAS PubMed Google Scholar
  7. Duboule, D. How to make a limb? Science 266, 575–576 (1994).
    Article ADS CAS PubMed Google Scholar
  8. Maden, M. The limb bud—part two. Nature 371, 560–561 (1994).
    Article ADS CAS PubMed Google Scholar
  9. Martin, G. Why thumbs are up. Nature 374, 410–411 (1995).
    Article ADS CAS PubMed Google Scholar
  10. Tabin, C. The initiation of the limb bud: Growth factors, Hox genes, and retinoids. Cell 80, 671–674 (1995).
    Article CAS PubMed Google Scholar
  11. Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature 374, 350–353 (1995).
    Article ADS CAS PubMed Google Scholar
  12. Yang, Y. Z. & Niswander, L. Interaction between the signaling molecules Wnt7a and shh during vertebrate limb development-dorsal signals regulated anteroposterior patterning. Cell 80, 939–947 (1995).
    Article CAS PubMed Google Scholar
  13. Riddle, R. et al. Induction of the LIM Homeobox gene Lmx-1 by Wnt7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640 (1995).
    Article CAS PubMed Google Scholar
  14. Vogel, A., Rodriguez, C., Warnken, W. & Izpisúa Belmonte, J. C. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378, 716–720 (1995).
    Article ADS CAS PubMed Google Scholar
  15. Loomis, C. A. et al. The mouse Engrailed-1 gene and ventral limb patterning. Nature 382, 360–363 (1996).
    Article ADS CAS PubMed Google Scholar
  16. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4-replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).
    Article CAS PubMed Google Scholar
  17. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. A. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).
    Article ADS CAS PubMed Google Scholar
  18. Fallon, J. F. et al. FGF-2: Apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).
    Article ADS CAS PubMed Google Scholar
  19. Ohuchi, H. et al. An additional limb can be induced form the flank of the chick embryo by FGF4. Biochem. Biophys. Res. Commun. 209, 809–816 (1995).
    Article CAS PubMed Google Scholar
  20. Cohn, M., Izpisúa Belmonte, J. C., Abud, H., Heath, J. K. & Tickle, C. FGF-2 application can induce additional limb formation from the flank of chick embryos. Cell 80, 739–746 (1995).
    Article CAS PubMed Google Scholar
  21. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signalling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).
    Article CAS PubMed Google Scholar
  22. Mahmood, R. et al. A role for FGF8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797–806 (1995).
    Article CAS PubMed Google Scholar
  23. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF-8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).
    Article CAS PubMed Google Scholar
  24. Vogel, A., Rodriguez, C. & Izpisúa Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).
    CAS PubMed Google Scholar
  25. Irvine, K. D. & Wieschaus, E. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).
    Article CAS PubMed Google Scholar
  26. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82, 795–802 (1995).
    Article CAS PubMed Google Scholar
  27. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a _Wingless_-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).
    CAS PubMed Google Scholar
  28. Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).
    Article ADS CAS PubMed Google Scholar
  29. Neumann, C. J. & Cohen, S. M. A hierarchy of cross-regulation involving Notch, wingless, vestigal and cut organizes the dorsal-ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).
    CAS PubMed Google Scholar
  30. De Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).
    CAS PubMed Google Scholar
  31. Wu, J. Y., Wen, L., Zhang, W.-J. & Rao, Y. The secreted product of Xenopus gene lunatic fringe, a vertebrate signaling molecule. Science 273, 355–358 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  32. Yuan, Y. P., Schultz, J., Mlodzik, M. & Bork, P. Secreted _Fringe_-like signalling molecules may be glycosyltransferases. Cell 88, 9–11 (1997).
    Article CAS PubMed Google Scholar
  33. Cope, L. D. et al. Molecular cloning of a gene involved in lipooligosaccharide biosynthesis and virulence expression by Haemophilus influenzae type B. Mol. Microbiol. 5, 1113–1124 (1991).
    Article CAS PubMed Google Scholar
  34. Hamburger, V. & Hamilton, H. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).
    Article CAS PubMed Google Scholar
  35. Ros, M. A. et al. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330 (1996).
    CAS PubMed Google Scholar
  36. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).
    Article ADS CAS PubMed Google Scholar
  37. Couso, J. P., Kust, E. & Martinez Arias, A. Serrate and wingless in Drosophila wing development. Curr. Biol. 5, 1437–1448 (1995).
    Article CAS PubMed Google Scholar
  38. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the Hedgehog/patched/signaling pathway from flies to mice: Induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996).
    Article CAS PubMed Google Scholar
  39. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of theZPA. Cell 75, 1401–1416 (1993).
    Article CAS PubMed Google Scholar
  40. Francis, P. H., Richardson, M. K., Brickell, P. M. & Tickle, C. Bone morphogenetic proteins and a signaling pathway that controls pattern in the developing chick limb. Development 120, 209–218 (1994).
    CAS PubMed Google Scholar
  41. Marigo, V., Scott, M. P., Johnson, R. L., Goodrich, L. V. & Tabin, C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by sonic hedgehog in the developing limb. Development 122, 1225–1233 (1996).
    CAS PubMed Google Scholar
  42. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).
    CAS PubMed Google Scholar
  43. Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of serrate and its relationship with notch and delta homologues during central neurogenesis. Dev. Biol. 174, 233–247 (1996).
    Article CAS PubMed Google Scholar
  44. Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged2: a _serrafe_-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).
    Article CAS PubMed Google Scholar
  45. Garcia-Bellido, A. How organisms are put together. Eur. Rev. 2, 15–21 (1994).
    Article Google Scholar
  46. Izpisúa Belmonte, J. C., Falkenstein, H., Dolle, P., Renucci, A. & Duboule, D. Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. EMBO J. 10, 2279–2289 (1991).
    Article PubMed PubMed Central Google Scholar
  47. Izpisúa Belmonte, J. C., De Robertis, E. M., Storey, K. G. & Stern, C. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659 (1993).
    Article PubMed Google Scholar
  48. Izpisúa Belmonte, J. C., Tickle, C., Dolle, P., Wolpert, L. & Duboule, D. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350, 585–589 (1991).
    Article ADS PubMed Google Scholar
  49. Morgan, B. A., Izpisúa Belmonte, J. C., Duboule, D. & Tabin, C. J. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239 (1992).
    Article ADS CAS PubMed Google Scholar
  50. Hughes, S., Greenhouse, J., Petropoulos, J. & Sutrave, P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61, 3004–3012 (1987).
    CAS PubMed PubMed Central Google Scholar
  51. Gilbert, S. F. Dev. Biol. (Sinauer, Sunderland, MA, 1995).

Download references