Ptashne, M. A Genetic Switch: Phage Lambda and Higher Organisms (Cell and Blackwell Scientific, Cambridge, MA, 1992). Google Scholar
Guarente, L. et al. Mutant lambda phage represser with a specific defect in its positive control fucntion. Proc. Natl Acad. Sci. USA79, 2236–2239 (1982). ArticleADSCASPubMedPubMed Central Google Scholar
Hochschild, A., Irwin, N. & Ptashne, M. Represser structure and the mechanism of positive control. Cell32, 319–325 (1983). ArticleCASPubMed Google Scholar
Bushman, F. D., Shang, C. & Ptashne, M. One glutamic acid residue plays a key role in the activation function of lambda represser. Cell58, 1163–1171 (1989). ArticleCASPubMed Google Scholar
Kuldell, N. & Hochschild, N. Amino acid substitutions in the -35 recognition motif of sigma 70 that result in defects in phage lambda repressor-stimulated transcription. J. Bact.176, 2991–2998 (1994). ArticleCASPubMedPubMed Central Google Scholar
Li, M., Moyle, H. & Susskind, M. M. Target of the transcriptional activating function of phage lambda cl protein. Science263, 75–77 (1994). ArticleADSCASPubMed Google Scholar
Busby, S. & Ebright, R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell79, 743–746 (1994). ArticleCASPubMed Google Scholar
Busby, S. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters. Mol. Microbiol. (in the press).
Niu, W. et al. Transcription activation at class II CAP-dependent promoters: two interactions between and RNA polymerase. Cell87, 1123–1134 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bell, A. et al. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids. Res.18, 7242–7250 (1990). Google Scholar
Zhou, Y., Zhang, X. & Ebright, R. H. Identification of the activating region of CAP: isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc. Natl Acad. Sci. USA90, 6081–6085 (1993). ArticleADSCASPubMedPubMed Central Google Scholar
Tang, H. et al. Location, structure and function of the target of a transcription activator protein. Genes Dev.8, 3058–3067 (1994). ArticleCASPubMed Google Scholar
Zhou, Q. et al. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev.6, 1964–1974 (1992). ArticleCASPubMed Google Scholar
Igarashi, K. & Ishihama, A. bipartite functional map fo the E. coli RNA polymerase alpha subunit. Cell65, 1015–1022 (1991). ArticleCASPubMed Google Scholar
Chen, Y., Ebright, Y. W. & Ebright, R. H. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science265, 90–92 (1994). ArticleADSCASPubMed Google Scholar
Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science262, 1407–1413 (1993). ArticleADSCASPubMed Google Scholar
Blatter, E. et al. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell78, 889–896 (1994). ArticleCASPubMed Google Scholar
Kumar, A. et al. Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J. Mol. Biol.235, 405–413 (1994). ArticleCASPubMed Google Scholar
Dove, S. L., Joung, J. K. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature386, 627–630 (1997). ArticleADSCASPubMed Google Scholar
Joung, J. K., Koepp, D. M. & Hochschild, A. Synergistic activation of transcription by bacteriophage 1 cI protein and E. coli cAMP receptor protein. Science265, 1863–1866 (1994). ArticleADSCASPubMed Google Scholar
Busby, S. et al. Transcription activation by the Escherichia coli cyclic AMP receptor protein—receptors bound in tandem at promoters can interact synergistically. J. Mol. Biol.241, 341–352 (1994). ArticleCASPubMed Google Scholar
Scott, S., Busby, S. & Beacham, I. Transcriptional coactivation at the ANSB promoters—involvement of the activating regions of CPR and FNR when bound in tandem. Mol. Microb. Biol.18, 521–531 (1995). CAS Google Scholar
Kustu, S. et al. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev.53, 367–376 (1989). CASPubMedPubMed Central Google Scholar
Magasanik, B. The regulation of nitrogen utilization in enteric bacteria. J. Cell. Biochem.51, 34–40 (1993). ArticleCASPubMed Google Scholar
Popham, D. L. et al. Function of a bacterial activator protein that binds to transcriptional enhancers. Science243, 629–635 (1989). ArticleADSCASPubMed Google Scholar
Austin, S. & Dixon, R. The prokaryotic enhancer binding protein NTRC has an aTPase activity which is phosphorylation and DNA dependent. EMBO J.11, 2219–2228 (1992). ArticleCASPubMedPubMed Central Google Scholar
Wedel, A. & Kustu, S. The bacterial enhancer bindign protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev.9, 2042–2052 (1995). ArticleCASPubMed Google Scholar
Miller, A. et al. RNA polymerase beta' subunit: target for DNA-binding-independent transcriptional activation. Science275, 1655–1657 (1997). ArticleCASPubMed Google Scholar
Buck, M. & Cannon, W. Mutation in the RNA polymerase recognition sequence of the Klebsiella pneumoniae nifH promoter permitting transcriptional activation in the absence of NifA binding to upstream activating sequences. Nucleic Acids Res.17, 2597–2612 (1989). ArticleCASPubMedPubMed Central Google Scholar
North, A. & Kustu, S. Mutant forms of the enhancer-binding protein NtrC can activate transcription from solution. J. Mol. Biol. (in the press).
Struhl, K. Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. Biochem.58, 1051–1077 (1989). ArticleCASPubMed Google Scholar
Struhl, K. Chromatin structure and RNA polymerase II connection: implications for transcription. Cell84, 179–182 (1996). ArticleCASPubMed Google Scholar
Koleske, A. J. & Young, R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci.20, 113–116 (1995). ArticleCASPubMed Google Scholar
Zawel, L. & Reinberg, D. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem.64, 522–561 (1995). Article Google Scholar
Koleske, A. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature368, 466–469 (1994). ArticleADSCASPubMed Google Scholar
Kim, T. K. et al. Effects of activation-defective TBP mutaitons on transcription initiation in yeast. Nature369, 252–255 (1994). ArticleADSCASPubMed Google Scholar
Nikolov, D. B. et al. Crystal structure of a TFIIB-TBP-TATA element ternary complex. Nature377, 119–128 (1995). ArticleADSCASPubMed Google Scholar
Ma, J. & Ptashne, M. Deletion analysis of GALL4 defines two transcriptional activating segments. Cell48, 847–853 (1987). ArticleCASPubMed Google Scholar
Hope, I. A., Mahadevan, S. & Struhl, K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature333, 635–640 (1988). ArticleADSCASPubMed Google Scholar
Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell81, 359–368 (1995). ArticleCASPubMed Google Scholar
Farell, S. et al. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev.10, 2359–2367 (1996). Article Google Scholar
Apone, L. et al. Yeast TAP (II)90 is required for cell-cycle progression through G(2)/M but not for general transcription activation. Genes Dev.10, 2368–2380 (1996). ArticleCASPubMed Google Scholar
Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature374, 820–822 (1995). ArticleADSCASPubMed Google Scholar
Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature374, 822–823 (1995). ArticleADSCASPubMed Google Scholar
Xiao, H., Friesen, J. D. & Lis, J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol.15, 5757–5761 (1995). ArticleCASPubMedPubMed Central Google Scholar
Koleske, A. J. et al. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell69, 883–894 (1992). ArticleCASPubMed Google Scholar
Gill, G. & Ptashne, M. Negative effect of the transcriptional activator GAL4. Nature334, 721–724 (1988). ArticleADSCASPubMed Google Scholar
Almer, A. et al. Removal of positioned nucleosomes form the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J.5, 2689–2696 (1986). ArticleCASPubMedPubMed Central Google Scholar
Treizenberg, S. J. Structure and function of transcriptional activation domains. Curr. Opin. Gen. Dev.5, 190–196 (1995). Article Google Scholar
Hope, I. A. & Struhl, K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell46, 885–894 (1986). ArticleCASPubMed Google Scholar
Ogawa, N. & Oshima, Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol.10, 2224–2236 (1990). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y., Reece, R. J. & Ptashne, M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J.15, 3951–3963 (1996). ArticleCASPubMedPubMed Central Google Scholar
Harrison, S. C. Peptide-surface association: the case of PDZ and PTB domains. Cell86, 341–343 (1996). ArticleCASPubMed Google Scholar
Ma, J. & Ptashne, M. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell50, 137–142 (1987). ArticleCASPubMed Google Scholar
Leuther, K. K., Salmeron, J. M. & Johnson, S. A. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a β sheet. Cell72, 575–585 (1993). ArticleCASPubMed Google Scholar
Stringer, K. F., Ingles, C. J. & Greenblatt, J. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature345, 783–786 (1990). ArticleADSCASPubMed Google Scholar
Nerlov, C. & Ziff, E. B. CCAAT/enhancer binding protein amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J.14, 4318–4328 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pugh, B. F. & Tijan, R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell61, 1187–1197 (1990). ArticleCASPubMed Google Scholar
Reese, J. C. et al. Yeast TAFIIs in a multisubunit complex required for activated transcription. Nature371, 523–527 (1994). ArticleADSCASPubMed Google Scholar
Burley, S. K. & Roeder R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem.65, 769–799 (1996). ArticleCASPubMed Google Scholar
Moqtaderi, Z. et al. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature383, 188–191 (1996). ArticleADSCASPubMed Google Scholar
Verrijzer, C. et al. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell81, 1115–1125 (1995). ArticleCASPubMed Google Scholar
Sauer, F., Hansen, S. & Tijan, R. Multiple TAFIIs directing synergistic activation of transcription. Science270, 1783–1788 (1995). ArticleADSCASPubMed Google Scholar
Hengartner, C. J. et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev.9, 897–910 (1995). ArticleCASPubMed Google Scholar
Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol.14, 7013–7024 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, M. Modulation of promoter occupancy by cooperative DNA/binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl Acad. Sci. USA94, 4311–4315 (1996). ArticleADS Google Scholar
Gaudreau, L. et al. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell (in the press).
Marsolier, M. et al. Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. Genes Dev.9, 410–422 (1995). ArticleCASPubMed Google Scholar
Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell55, 1137–1145 (1988). ArticleCASPubMed Google Scholar
Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol.254, 130–149 (1995). ArticleCASPubMed Google Scholar
Polach, K. J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol.258, 800–812 (1996). ArticleCASPubMed Google Scholar
Peterson, C. L. & Tamkun, J. W. The Swi-Snf complex: a chromatin remodeling machine? Trends Biochem. Sci.20, 143–146 (1995). ArticleCASPubMed Google Scholar
Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev.6, 176–184 (1996). ArticleCASPubMed Google Scholar
Cairns, B. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell87, 1249–1260 (1996). ArticleCASPubMed Google Scholar
Wilson, C. J. et al. RNA polymerase II holeoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell84, 235–244 (1996). ArticleCASPubMed Google Scholar
Laurent, B. C., Treitel, M. A. & Carlson, M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl Acad. Sci. USA88, 2687–2691 (1991). ArticleADSCASPubMedPubMed Central Google Scholar
DeRobertis, F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature384, 589–591 (1996). ArticleADS Google Scholar
Benjtley, D. Regulation of transcriptional elongation by RNA polymerase II. Curr. Opin. Genet. Dev.5, 210–216 (1995). Article Google Scholar
Rasmussen, E. B. & Lis, J. T. Short transcripts of the ternary complex provide insight into RNA polymerase II elongation pausing. J. Mol. Biol.252, 522–535 (1995). ArticleCASPubMed Google Scholar
Blau, J. et al. Three functional classes of transcriptional activation domains. Mol. Cell Biol.16, 244–255 (1996). Article Google Scholar
McClure, W. R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem.54, 171–204 (1985). ArticleCASPubMed Google Scholar
Ninfa, A. J., Reitzer, L. J. & Magasanik, B. Initiation of transcription at the bacterial glnAP2 promoter by purified E. coli components is facilitated by enhancers. Cell50, 1039–1046 (1987). ArticleCASPubMed Google Scholar
Sasse-Dwight, S. & Gralla, J. D. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl Acad. Sci. USA85, 8934–8938 (1988). ArticleADSCASPubMedPubMed Central Google Scholar
Straney, D., Straney, S. & Crothers, D. Synergy between Escherichia coli CAP protein and RNA polymerase in the lac promoter open complex. J. Mol. Biol.206, 41–57 (1989). ArticleCASPubMed Google Scholar
Zhang, L. & Gralla, J. D. Micrococcal nuclease as a probe for bound and distorted DNA in lac transcription and repression complexes. Nucleic Acids Res.17, 5017–5028 (1989). ArticleCASPubMedPubMed Central Google Scholar
Sasse-Dwight, S. & Gralla, J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem.262, 8074–8081 (1989). Google Scholar
Malan, T. P., Buc, H. & McClure, W. R. Mechanism of CRP-cAMP activation of the lac operon transcription initiation activation of P1 promoter. J. Mol. Biol.157, 493–525 (1982). Article Google Scholar
Hawley, D. K. & McClure, W. R. Mechanism of activation of transcription initiation from the lambda-PRM promoter. J. Mol. Biol.157, 493–525 (1982). ArticleCASPubMed Google Scholar
Meyer, B. J. & Ptashne, M. Gene regulation at the right operator (OR) of bacteriophage lambda III: lambda represser directly activates gene transcription. J. Mol. Biol.139, 195–205 (1980). ArticleCASPubMed Google Scholar
Li, M., McClure, W. & Susskind, M. Changing the mechanism of transcriptional activation by phage lambda represser. Proc. Natl Acad. Sci. USA (in the press).
Smith, T. & Sauer, R. Dual recognition of open-complex formation and promoter clearance by Arc explains a novel represser to activator switch. Proc. Natl Acad. Sci. USA93, 8868–8872 (1996). ArticleADSCASPubMedPubMed Central Google Scholar
Monsalve, M. et al. Activation and repression of transcription at two different phage E29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase. EMBO J.15, 383–391 (1996). ArticleCASPubMedPubMed Central Google Scholar
Choy, H. et al. Repression and activation of transcription by Gal and Lac repressers: involvement of alpha subunit of RNA polymerase. EMBO J.14, 4523–4529 (1995). ArticleCASPubMedPubMed Central Google Scholar
Couto, G., Klages, N. & Strubin, M. Synergistic and promoter-selective activation of transcription by recruitment of TFIID and TFIIB. Proc. Natl Acad. Sci. USA (in the press).