A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression (original) (raw)
References
Chambon, P. The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol.5, 115– 125(1994). ArticleCAS Google Scholar
Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell83, 835–839 (1995). ArticleCAS Google Scholar
Wong, J., Shi, Y. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus Tgene by the thyroid hormone receptor. Genes Dev9, 2696–2711(1995). ArticleCAS Google Scholar
Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell54, 313–323 (1988). ArticleCAS Google Scholar
Baniahmad, A., Kohne, A. C. & Renkawitz, R. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor.EMBO J.11, 1015–1023 (1992). ArticleCAS Google Scholar
Baniahmad, A. et al. Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl Acad. Sci. USA90, 8832–8836 (1993). ArticleADSCAS Google Scholar
Baniahmad, A. et al. The t4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol.15, 76–86 (1995). ArticleCAS Google Scholar
Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature377, 397–404 (1995). ArticleADSCAS Google Scholar
Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature377, 451–454 (1995). ArticleADSCAS Google Scholar
Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol.16, 5458–5465 (1996). ArticleCAS Google Scholar
Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell72, 211–222 (1993). ArticleCAS Google Scholar
Ayer, D. E. & Eisenman, R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes De, 7, 2110–2119 (1993). ArticleCAS Google Scholar
Hurlin, P. J., Ayer, D. E., Grandori, C. & Eisenman, R. N. The Max transcription factor network. Cold Spring Harb. Symp. Quant. Biol.59, 109–116 (1994). ArticleCAS Google Scholar
Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mac-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell80, 767–776(1995). ArticleCAS Google Scholar
Schreiber-Agus, N. et al. An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell80, 777–786 (1995). ArticleCAS Google Scholar
Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol.16, 5772–5781(1996). ArticleCAS Google Scholar
Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating type switching. Cell48, 579–587 (1987). ArticleCAS Google Scholar
Sternber, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell48, 567–577 (1987). Article Google Scholar
Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The S. cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helical motifs. Mol. Cell. Biol.10, 5927–5936 (1990). ArticleCAS Google Scholar
Vidal, M., Strich, R., Esposito, R. E. Gaber, R. F. RPD1 is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol.11, 6306–6316 (1991). ArticleCAS Google Scholar
Vidal, M. Gaber, R. F. RPD3 encodes a second factor required to achieve maximal positive and negative regulation. Mol. Cell. Biol.11, 6317–6327 (1991). ArticleCAS Google Scholar
Wang, H. Stillman, D. Transcriptional repression in S. cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol.13, 1805–1814 (1993). CAS Google Scholar
Nawaz, Z. et al. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor. Mol. Gen. Genet.245, 724–733 (1994). ArticleCAS Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996). ArticleADSCAS Google Scholar
Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays17, 423–430 (1995). ArticleCAS Google Scholar
Yang, W.-M., Inouye, C ., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA93, 12845–12850 1996). ArticleADSCAS Google Scholar
Rose, D. W., McCabe, G., Feramisco, J. R. & Adler, M. Expression of c–fos and AP-1 activity in senescent human fibroblasts is not sufficient for DNA synthesis. J. Cell Biol.119, 1405–1411 (1992). ArticleCAS Google Scholar
Sgouras, D. N. et al. ERF: an ETS–domain protein with strong transcriptional repressor activity, can suppress ets–associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J.14, 4781–4793 (1995). ArticleCAS Google Scholar
O'Neill, E. M., Rebay, I., Tijian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell78, 137–147 (1994). ArticleCAS Google Scholar
Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature377, 454–457 (1995). ArticleADSCAS Google Scholar
Rundlett, S. E. et al. HDA I and RPD3 are members of distinct yeast histone deacetylase complexes. Proc. Natl Acad. Sci. USA93, 14503–14508 (1996). ArticleADSCAS Google Scholar
Gray, S. & Levine, M. Transcriptional repression in development. Curn Opin. Cell Biol.8, 358–364 (1996). CAS Google Scholar
Kingston, R. E., Bunker, C. A. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev.10, 905–920 (1996). Google Scholar
Svaren, J. Horz, W. Regulation of gene expression by nucleosomes. Curr Opin. Genet. Dev6, 164–170 (1996). ArticleCAS Google Scholar
Hanna-Rose, W. & Hansen, U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet.12, 229–234 (1996). ArticleCAS Google Scholar
Peterson, C. L. Multiple SWitches to turn on chromatin. Cur, Opin. Genet. Dev, 6, 171–175 (1996). ArticleCAS Google Scholar
Roth, S. Y. Allis, C. D. Histone acetylation and chromatin assembly: A single escort, multiple dances? Cell87, 5–8 (1996). ArticleCAS Google Scholar
Wolffe, A. P. & Pruss, D. Targeting chromatin disruption. Cell84, 817–819 (1996). ArticleCAS Google Scholar
Lee, D. Y., Hayes, J. J., Pruss, D. Wolffe A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell72, 73–84 (1993). ArticleCAS Google Scholar
Scol, W., Mahon, M. J., Lee, Y. K. & Moore, D. D. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol.10, 1646–1655 (1996). Google Scholar
Keleher, C. A., Redd, M., Schultz, J., Carlson, M. & Johnson, A. D. SSN6-Tup 1 is a general repressor of transcription in yeast. Cell68, 709–719 (1992). ArticleCAS Google Scholar
Almouzni, G., Khochbin, S., Dimitrov, S. & Wolffe, A. P. Histone acetylation influences both gene expression and development of Xenopus laevis. Dev. Biol.165, 654–659 (1994). ArticleCAS Google Scholar
Ogryzko, V. V., Schlitz, R. L., Russanova, V., Howard, B. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell87, 953–959 (1996). ArticleCAS Google Scholar
Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature384, 641– 643 (1996). ArticleADSCAS Google Scholar
Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP– I inhibition by nuclear receptors. Cell85, 1–12 (1996). Article Google Scholar
Hendzel, M. J., Delcuve, G. P. & Davie, J. R. Histone deacetylase is a component of the internal nuclear matrix. J. Biol. Chem.266, 21936–21942 (1991). CASPubMed Google Scholar
Li, W., Chen, H. Y. & Davie, J. R. Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochem. J.314, 631–637 (1996). ArticleCAS Google Scholar
Onate, S. A., Tsai, S. Y., Tsai, M.–J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science270, 1354–1357 (1995). ArticleADSCAS Google Scholar
Yang, X.-J., Ogryzko, V. V., Nishikawa, J.-I., Howard, B. H. & Nakatani, Y. Nature382, 319–324 (1996). ArticleADSCAS Google Scholar