A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression (original) (raw)

References

  1. Chambon, P. The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 5, 115– 125(1994).
    Article CAS Google Scholar
  2. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).
    Article CAS Google Scholar
  3. Wong, J., Shi, Y. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus Tgene by the thyroid hormone receptor. Genes Dev 9, 2696–2711(1995).
    Article CAS Google Scholar
  4. Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313–323 (1988).
    Article CAS Google Scholar
  5. Baniahmad, A., Kohne, A. C. & Renkawitz, R. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor.EMBO J. 11, 1015–1023 (1992).
    Article CAS Google Scholar
  6. Baniahmad, A. et al. Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl Acad. Sci. USA 90, 8832–8836 (1993).
    Article ADS CAS Google Scholar
  7. Baniahmad, A. et al. The t4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15, 76–86 (1995).
    Article CAS Google Scholar
  8. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).
    Article ADS CAS Google Scholar
  9. Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451–454 (1995).
    Article ADS CAS Google Scholar
  10. Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).
    Article CAS Google Scholar
  11. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).
    Article CAS Google Scholar
  12. Ayer, D. E. & Eisenman, R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes De, 7, 2110–2119 (1993).
    Article CAS Google Scholar
  13. Hurlin, P. J., Ayer, D. E., Grandori, C. & Eisenman, R. N. The Max transcription factor network. Cold Spring Harb. Symp. Quant. Biol. 59, 109–116 (1994).
    Article CAS Google Scholar
  14. Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mac-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776(1995).
    Article CAS Google Scholar
  15. Schreiber-Agus, N. et al. An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).
    Article CAS Google Scholar
  16. Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16, 5772–5781(1996).
    Article CAS Google Scholar
  17. Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating type switching. Cell 48, 579–587 (1987).
    Article CAS Google Scholar
  18. Sternber, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).
    Article Google Scholar
  19. Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The S. cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helical motifs. Mol. Cell. Biol. 10, 5927–5936 (1990).
    Article CAS Google Scholar
  20. Vidal, M., Strich, R., Esposito, R. E. Gaber, R. F. RPD1 is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11, 6306–6316 (1991).
    Article CAS Google Scholar
  21. Vidal, M. Gaber, R. F. RPD3 encodes a second factor required to achieve maximal positive and negative regulation. Mol. Cell. Biol. 11, 6317–6327 (1991).
    Article CAS Google Scholar
  22. Wang, H. Stillman, D. Transcriptional repression in S. cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13, 1805–1814 (1993).
    CAS Google Scholar
  23. Nawaz, Z. et al. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor. Mol. Gen. Genet. 245, 724–733 (1994).
    Article CAS Google Scholar
  24. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).
    Article ADS CAS Google Scholar
  25. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 17, 423–430 (1995).
    Article CAS Google Scholar
  26. Yang, W.-M., Inouye, C ., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 1996).
    Article ADS CAS Google Scholar
  27. Rose, D. W., McCabe, G., Feramisco, J. R. & Adler, M. Expression of c–fos and AP-1 activity in senescent human fibroblasts is not sufficient for DNA synthesis. J. Cell Biol. 119, 1405–1411 (1992).
    Article CAS Google Scholar
  28. Sgouras, D. N. et al. ERF: an ETS–domain protein with strong transcriptional repressor activity, can suppress ets–associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 14, 4781–4793 (1995).
    Article CAS Google Scholar
  29. O'Neill, E. M., Rebay, I., Tijian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994).
    Article CAS Google Scholar
  30. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).
    Article ADS CAS Google Scholar
  31. Rundlett, S. E. et al. HDA I and RPD3 are members of distinct yeast histone deacetylase complexes. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).
    Article ADS CAS Google Scholar
  32. Gray, S. & Levine, M. Transcriptional repression in development. Curn Opin. Cell Biol. 8, 358–364 (1996).
    CAS Google Scholar
  33. Kingston, R. E., Bunker, C. A. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905–920 (1996).
    Google Scholar
  34. Svaren, J. Horz, W. Regulation of gene expression by nucleosomes. Curr Opin. Genet. Dev 6, 164–170 (1996).
    Article CAS Google Scholar
  35. Hanna-Rose, W. & Hansen, U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12, 229–234 (1996).
    Article CAS Google Scholar
  36. Johnson, A. D. The price of repression. Cell 81, 655–658 (1995).
    Article CAS Google Scholar
  37. Peterson, C. L. Multiple SWitches to turn on chromatin. Cur, Opin. Genet. Dev, 6, 171–175 (1996).
    Article CAS Google Scholar
  38. Roth, S. Y. Allis, C. D. Histone acetylation and chromatin assembly: A single escort, multiple dances? Cell 87, 5–8 (1996).
    Article CAS Google Scholar
  39. Wolffe, A. P. & Pruss, D. Targeting chromatin disruption. Cell 84, 817–819 (1996).
    Article CAS Google Scholar
  40. Lee, D. Y., Hayes, J. J., Pruss, D. Wolffe A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).
    Article CAS Google Scholar
  41. Scol, W., Mahon, M. J., Lee, Y. K. & Moore, D. D. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10, 1646–1655 (1996).
    Google Scholar
  42. Keleher, C. A., Redd, M., Schultz, J., Carlson, M. & Johnson, A. D. SSN6-Tup 1 is a general repressor of transcription in yeast. Cell 68, 709–719 (1992).
    Article CAS Google Scholar
  43. Almouzni, G., Khochbin, S., Dimitrov, S. & Wolffe, A. P. Histone acetylation influences both gene expression and development of Xenopus laevis. Dev. Biol. 165, 654–659 (1994).
    Article CAS Google Scholar
  44. Ogryzko, V. V., Schlitz, R. L., Russanova, V., Howard, B. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
    Article CAS Google Scholar
  45. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641– 643 (1996).
    Article ADS CAS Google Scholar
  46. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP– I inhibition by nuclear receptors. Cell 85, 1–12 (1996).
    Article Google Scholar
  47. Hendzel, M. J., Delcuve, G. P. & Davie, J. R. Histone deacetylase is a component of the internal nuclear matrix. J. Biol. Chem. 266, 21936–21942 (1991).
    CAS PubMed Google Scholar
  48. Li, W., Chen, H. Y. & Davie, J. R. Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochem. J. 314, 631–637 (1996).
    Article CAS Google Scholar
  49. Onate, S. A., Tsai, S. Y., Tsai, M.–J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).
    Article ADS CAS Google Scholar
  50. Yang, X.-J., Ogryzko, V. V., Nishikawa, J.-I., Howard, B. H. & Nakatani, Y. Nature 382, 319–324 (1996).
    Article ADS CAS Google Scholar
  51. Laherty, C. D. et al. Cell (in the press).

Download references