Acute stimulation of glucose metabolism in mice by leptin treatment (original) (raw)
References
Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science269, 543–546 (1995). ArticleADSCAS Google Scholar
Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science269, 546–549 (1995). ArticleADSCAS Google Scholar
Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science269, 540–543 (1995). ArticleADSCAS Google Scholar
Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA94, 8878–8883 (1997). ArticleADSCAS Google Scholar
Tartaglia, L. A.. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell83, 1263–1271 (1995). ArticleCAS Google Scholar
Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature379, 632–635 (1996). ArticleADSCAS Google Scholar
Levin, N., Nelson, C., Gurney, A., Vanelen, R. & De Sauvage, F. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc. Natl Acad. Sci. USA93, 1726–1730 (1996). ArticleADSCAS Google Scholar
Cohen, B., Novick, D. & Rubinstein, M. Modulation of insulin activities by leptin. Science274, 1185–1188 (1996). ArticleADSCAS Google Scholar
Saladin, T. et al. Transient increase in obese gene expression after food intake or insulin administration. Science377, 527–529 (1995). CAS Google Scholar
Mercer, J. G. et al. Localization of leptin receptor mRNA and the long form splice variant (Ob-R) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett.387, 113–116 (1996). ArticleCAS Google Scholar
Golden, P. L., Maccagnan, T. J. & Pardridge, W. M. Human blood-brain barrier leptin receptor. J. Clin. Invest.99, 14–18 (1997). ArticleCAS Google Scholar
Maffei, M. et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl Acad. Sci. USA92, 6957–6960 (1995). ArticleADSCAS Google Scholar
Satoh, N. et al. Pathophysiological significance of the obese gene product, leptin, in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology138, 947–954 (1997). ArticleCAS Google Scholar
Fei, H. et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl Acad. Sci. USA94, 7001–7005 (1997). ArticleADSCAS Google Scholar
Vaisse, C. et al. Leptin activation of Stat3 in the hypothalamus of wild type and ob/ob mice but not db/db mice. Nature Genet.14, 95–97 (1996). ArticleCAS Google Scholar
Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest.98, 1101–1106 (1996). ArticleCAS Google Scholar
Caro, J. F. et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet348, 159–161 (1996). ArticleCAS Google Scholar
Miles, P. D. G., Yamatani, K., Lickley, H. L. A. & Vranic, M. Mechanism of glucoregulatory responses to stress and their deficiency in diabetes. Proc. Natl Acad. Sci. USA88, 1296–1300 (1991). ArticleADSCAS Google Scholar
Leong, S. F. & Clark, J. B. Regional enzyme development in rat brain: Enzymes associated with glucose utilization. Biochemistry218, 131–138 (1984). ArticleCAS Google Scholar
Lautala, P. & Martin, J. M. Glucose metabolism in rat hypothalamus. Acta Endocrinol.98, 481–487 (1981). ArticleCAS Google Scholar
Nagai, K., Fujii, T., Inoue, S., Takamura, Y. & Nakagawa, H. Electrical stimulation of the suprachiasmatic nucleus of the hypothalamus causes hyperglycemia. Hormone Metab. Res.20, 37–39 (1988). ArticleCAS Google Scholar
Vranic, M., Kawamori, R., Pek, S., Kovacevic, N. & Wrenshall, G. A. The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J. Clin. Invest.57, 245–255 (1976). ArticleCAS Google Scholar
Gosteli-Peter, M. A., Schmid, C. & Zapf, J. Triiodothyronine increases glucose transporter isotype 4 mRNA expression, glucose transport, and glycogen synthesis in adult rat cardiomyocytes in long-term culture. Biochem. Biophys. Res. Commun.221, 521–524 (1996). ArticleCAS Google Scholar
Weinstein, S. P., O'Boyle, E. & Haber, R. S. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes43, 1185–1189 (1994). ArticleCAS Google Scholar
Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature382, 250–252 (1996). ArticleADSCAS Google Scholar
Somogyi, M. Determination of blood sugar. J. Biol. Chem.160, 69–73 (1945). CAS Google Scholar
Tsao, T. S., Burcelin, R., Katz, E. B., Huang, L. & Charron, M. J. Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes45, 28–36 (1996). ArticleCAS Google Scholar
Massillon, D., Barzilai, N., Hawkins, M., Prus-Wertherimer, D. & Rossetti, L. Quantitation of hepatic glucose fluxes and pathways of hepatic glycogen synthesis in conscious mice. Am. J. Physiol.269, E1037–E1043 (1995). CASPubMed Google Scholar