Homotypic vacuolar fusion mediated by t- and v-SNAREs (original) (raw)

References

  1. 1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55-63 (1994). 2. Sollner, T., Bennet, M. K., Whiteheart, S., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409-418 (1993). 3. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324 (1993). 4. Hardwick, K. & Pelham, H. R. B. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. /. Cell Biol. 119, 513-521 (1992). 5. S0gaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937-948 (1994). 6. Haas, A. & Wickner, W. Homotypic vacuole fusion requires Secl7p (Yeast a-SNAP) and SeclSp (yeast NSF). EMBOJ. 15, 3296-3305 (1996). 7. Conradt, B., Haas, A. & Wickner, W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J. Cell Biol. 126, 99-110 (1994). 8. Mayer, A., Wickner, W. & Haas, A. SeclSp (NSF)-driven release of Secl7p (a-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83-94 (1996). 9. Aalto, M. K., Ronne, H. & Keranen, S. Yeast syntaxins Ssolp and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBOJ. 12, 4095-4104 (1993). 10. Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855-861 (1993). 11. Becherer, K. A., Rieder, S. E., Emr, S. D. & Jones, E. W. Novel syntaxin homologue, Pepl2p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol. Cell. Biol. 7, 579-594 (1996). 12. Lewis, M. J. & Pelham, H. R. B. SNARE-mediated retrograde traffic from the Golgi complex to the endoplasmic reticulum. Cell 85, 205-215 (1996). 13. Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. /. Cell Biol. 128, 779-792 (1995). 14. Stevens, T. H., Esmon, B. & Schekman, R. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30, 439-448 (1982). 15. Wichmann, H., Hegst, L. & Gallwitz, D. Endocytosis in yeast: evidence for the inovlvement of a small GTP-binding protein (Ypt7p). Cell 71, 1131-1142 (1992). 16. Haas, A., Schleglmann, D., Lazar, T., Gallwitz, D. & Wickner, W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBOJ. 14, 5258-5270 (1995). 17. Wada, Y. & Anraku, Y. Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. /. Biol Chem. 267, 18671-18675 (1992). 18. Haas, A. A quantitative assay to measure homotypic vacuole fusion in vitro. Meth. Cell Sci. 17, 283-294(1995). Xu, Z., Mayer, A., Muller, E. & Wickner, W. A heterodimer of thioredoxin and IB2 cooperates with Secl8p(NSF) to promote yeast vacuole inheritance. /. Cell Biol. 136, 299-306 (1997). Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalysed by the Ras-like GTPase Ypt7p after symmetric priming by SeclSp (NSF). /. Cell Biol. 136, 307-317 (1997). Haas, A., Conradt, B. & Wickner, W. J. G-protein ligands inhibit in vitro reactions of vacuole inheritance./. Cell Biol. 126, 87-97 (1994). Banfield, D. K. et al. Localization of Sed5, a putative vesicle targeting molecule, to the ds-Golgi network invovles both its transmembrane and cytoplasmic domains./. CellBiol. 127,357-371 (1994). Yoshida, A. et al. HPC-1 is associated with synaptotagmin and w-conotoxin receptor. /. Biol. Chem. 267, 24925-24928 (1992). Walch-Solimena, C. et al. The t-SNAREs syntaxin 1 and SNAP25 are present on organelles that participate in synaptic vesicle recycling. /. Cell Biol. 128, 637-645 (1995). Steel, G. J., Tagaya, M. & Woodman, P. G. Association of the fusion protein NSF with clathrin-coated vesicle membranes. EMBOJ. 15, 745-752 (1996). Dascher, C., Matteson, J. & Balch, W. E. Syntaxin-5 regulates endoplasmic-reticulum to Golgi transport. /. Biol Chem. 269, 29363-29366 (1994). Wach, A., Brachat, A., Poehlmann, R. & Phillipsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-1808 (1994). Semenza, J. C., Hardwick, K. G., Dean, N. & Pelham, H. R. B. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349-1357 (1990). 29. Kilmartin, J. V. & Adams, A. E. M. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922-933 (1984).

Download references