Neuronal position in the developing brain is regulated by mouse disabled-1 (original) (raw)

References

  1. Hatten, M. E. The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 3, 38–44 (1993).
    Google Scholar
  2. McConnell, S. K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 761–768 (1995).
    Google Scholar
  3. Howell, B. W., Gertler, F. B. & Cooper, J. A. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16, 1165–1175 (1997).
    Google Scholar
  4. Margolis, B. The PI/PTB domain: a new protein interaction domain involved in growth factor receptor signaling. J. Lab. Clin. Med. 128, 235–241 (1996).
    Google Scholar
  5. Goffinet, A. M., So, K. F., Yamamoto, M., Edwards, M. & Caviness, V. S. J. Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res. 318, 263–276 (1984).
    Google Scholar
  6. Caviness, V. S. J. & Sidman, R. L. Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse. J. Comp. Neurol. 147, 235–254 (1973).
    Google Scholar
  7. Stanfield, B. B. & Cowan, W. M. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185, 393–422 (1979).
    Google Scholar
  8. D'Arcangelo, G. et al. Aprotein related to extracellular matrix proteins deleted in the mouse mutant reeler . Nature 374, 719–723 (1995).
    Article ADS CAS Google Scholar
  9. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).
    Google Scholar
  10. Hirotsune, S. et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet. 10, 77–83 (1995).
    Google Scholar
  11. Goffinet, A. M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. 319, 261–296 (1984).
    Google Scholar
  12. Lannoo, M. J., Brochu, G., Maler, L. & Hawkes, R. Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (gymnotiformes) reveals three modes of Purkinje cell development. J. Comp. Neurol. 310, 215–233 (1991).
    Google Scholar
  13. McConnell, S. K. The control of neuronal identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 2, 23–27 (1992).
    Google Scholar
  14. Goffinet, A. M. An early development defect in the cerebral cortex of the reeler mouse. A morphological study leading to a hypothesis concerning the action of the mutant gene. Anat. Embryol. 157, 205–216 (1976).
    Google Scholar
  15. Caviness, V. S. J Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res. 256, 293–302 (1982).
    Google Scholar
  16. Hoffarth, R. M., Johnston, J. G., Krushel, L. A. & Van der Kooy, D. The mouse mutation reeler causes increased adhesion within a subpopulation of early postmitotic cortical neurons. J. Neurosci. 15, 4838–4850 (1995).
    Google Scholar
  17. Smeyne, R. J. et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell. Neurosci. 6, 230–251 (1995).
    Google Scholar
  18. Miyata, T. et al. Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J. Comp. Neurol. 372, 215–228 (1996).
    Google Scholar
  19. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).
    Google Scholar
  20. Schwartzberg, P. L. et al. Mice homozygous for the abl m1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65, 1165–1175 (1991).
    Google Scholar
  21. Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c- abl proto-oncogene. Cell 65, 1153–1163 (1991).
    Google Scholar
  22. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798–802 (1996).
    Google Scholar
  23. Yoneshima, H. et al. Anovel neurological mutation of mouse, yotari which has a reeler-like phenotype but expresses reelin. Neurosci. Res. (in the press).
  24. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).
    Google Scholar
  25. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).
    Google Scholar
  26. Sheldon, M. et al. Scrambler and yotari : disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature 389, 730–733 (1997).
    Article ADS CAS Google Scholar
  27. Gertler, F. B., Hill, K. K., Clark, M. J. & Hoffmann, F. M. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev. 7, 441–453 (1993).
    Google Scholar
  28. Gertler, F. B., Bennett, R. L., Clark, M. J. & Hoffmann, F. M. Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axonogenesis is revealed throgh dosage-sensitive interactions with disabled . Cell 58, 103–113 (1989).
    Google Scholar
  29. Elkins, T., Zinn, K., McAllister, L., Hoffmann, F. M. & Goodman, C. S. Genetic analysis of a Drosophila neural cell adhesion molecule: Interaction of Fasciclin I and Abelson tyrosine kinase mutations. Cell 60, 565–575 (1990).
    Google Scholar
  30. DelRio, J. A. et al. Arole for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997).
    Article ADS CAS Google Scholar

Download references