Neuronal position in the developing brain is regulated by mouse disabled-1 (original) (raw)
References
Hatten, M. E. The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol.3, 38–44 (1993). Google Scholar
McConnell, S. K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron15, 761–768 (1995). Google Scholar
Howell, B. W., Gertler, F. B. & Cooper, J. A. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J.16, 1165–1175 (1997). Google Scholar
Margolis, B. The PI/PTB domain: a new protein interaction domain involved in growth factor receptor signaling. J. Lab. Clin. Med.128, 235–241 (1996). Google Scholar
Goffinet, A. M., So, K. F., Yamamoto, M., Edwards, M. & Caviness, V. S. J. Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res.318, 263–276 (1984). Google Scholar
Caviness, V. S. J. & Sidman, R. L. Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse. J. Comp. Neurol.147, 235–254 (1973). Google Scholar
Stanfield, B. B. & Cowan, W. M. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol.185, 393–422 (1979). Google Scholar
D'Arcangelo, G. et al. Aprotein related to extracellular matrix proteins deleted in the mouse mutant reeler . Nature374, 719–723 (1995). ArticleADSCAS Google Scholar
Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron14, 899–912 (1995). Google Scholar
Hirotsune, S. et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet.10, 77–83 (1995). Google Scholar
Goffinet, A. M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res.319, 261–296 (1984). Google Scholar
Lannoo, M. J., Brochu, G., Maler, L. & Hawkes, R. Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (gymnotiformes) reveals three modes of Purkinje cell development. J. Comp. Neurol.310, 215–233 (1991). Google Scholar
McConnell, S. K. The control of neuronal identity in the developing cerebral cortex. Curr. Opin. Neurobiol.2, 23–27 (1992). Google Scholar
Goffinet, A. M. An early development defect in the cerebral cortex of the reeler mouse. A morphological study leading to a hypothesis concerning the action of the mutant gene. Anat. Embryol.157, 205–216 (1976). Google Scholar
Caviness, V. S. J Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res.256, 293–302 (1982). Google Scholar
Hoffarth, R. M., Johnston, J. G., Krushel, L. A. & Van der Kooy, D. The mouse mutation reeler causes increased adhesion within a subpopulation of early postmitotic cortical neurons. J. Neurosci.15, 4838–4850 (1995). Google Scholar
Smeyne, R. J. et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell. Neurosci.6, 230–251 (1995). Google Scholar
Miyata, T. et al. Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J. Comp. Neurol.372, 215–228 (1996). Google Scholar
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell64, 693–702 (1991). Google Scholar
Schwartzberg, P. L. et al. Mice homozygous for the abl m1 mutation show poor viability and depletion of selected B and T cell populations. Cell65, 1165–1175 (1991). Google Scholar
Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c- abl proto-oncogene. Cell65, 1153–1163 (1991). Google Scholar
Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome7, 798–802 (1996). Google Scholar
Yoneshima, H. et al. Anovel neurological mutation of mouse, yotari which has a reeler-like phenotype but expresses reelin. Neurosci. Res. (in the press).
Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA93, 11173–11178 (1996). Google Scholar
Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron18, 29–42 (1997). Google Scholar
Sheldon, M. et al. Scrambler and yotari : disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature389, 730–733 (1997). ArticleADSCAS Google Scholar
Gertler, F. B., Hill, K. K., Clark, M. J. & Hoffmann, F. M. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev.7, 441–453 (1993). Google Scholar
Gertler, F. B., Bennett, R. L., Clark, M. J. & Hoffmann, F. M. Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axonogenesis is revealed throgh dosage-sensitive interactions with disabled . Cell58, 103–113 (1989). Google Scholar
Elkins, T., Zinn, K., McAllister, L., Hoffmann, F. M. & Goodman, C. S. Genetic analysis of a Drosophila neural cell adhesion molecule: Interaction of Fasciclin I and Abelson tyrosine kinase mutations. Cell60, 565–575 (1990). Google Scholar
DelRio, J. A. et al. Arole for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature385, 70–74 (1997). ArticleADSCAS Google Scholar