Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period (original) (raw)

References

  1. Sarmiento, J. L. & Toggweiler, R. Anew model for the role of the oceans in determining atmospheric p CO 2 Nature 308, 621–624 (1984).
    ADS CAS Google Scholar
  2. Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2variations and ocean circulation. Nature 308, 624–626 (1984).
    ADS CAS Google Scholar
  3. Knox, F. & McElroy, M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984).
    Google Scholar
  4. Toggweiler, R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 163–184 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).
    Google Scholar
  5. Wenk, T. & Siegenthaler, U. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 185–194 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).
    Google Scholar
  6. Knox-Ennever, F. & McElroy, M. B. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 154–162 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).
    Google Scholar
  7. Kumar, N. et al. Increased biological productivity and export production in the glacial southern ocean. Nature 378, 675–680 (1995).
    ADS CAS Google Scholar
  8. Altabet, M. A. et al. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic detected using 15N/14N ratios. Nature 354, 136–139 (1991).
    ADS Google Scholar
  9. Francois, R., Altabet, M. A. & Burckle, L. D. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the southern ocean as recorded by sediment δ15N. Paleoceanography 7, 589–606 (1992).
    Google Scholar
  10. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).
    Google Scholar
  11. Altabet, M. A. & Francois, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Pedersen, T. F., Kaminski, M. & Labeyrie, L. D.) 281–306 (Vol. 17, NATO AST Ser. I, Springer, Berlin, (1994)).
    Google Scholar
  12. Mortlock, R. A. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).
    ADS Google Scholar
  13. Charles, C. D. et al. Biogenic opal in southern ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation. Paleoceanography 6, 697–728 (1991).
    Google Scholar
  14. Bareille, G. et al. Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean. Mar. Chem. 35, 537–551 (1991).
    Google Scholar
  15. Suman, D. O. & Bacon, M. P. Variations in Holocene sedimentation in the North American basin determined from 230Th measurements. Deep-Sea Res. 36, 869–878 (1989).
    Google Scholar
  16. Francois, R., Bacon, M. P. & Suman, D. O. Thorium-230 profiling in deep-sea sediments: High-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography 5, 761–787 (1990).
    Google Scholar
  17. Kumar, N. et al. 231Pa/230Th ratios in sediments as a proxy for the past changes in southern ocean productivity. Nature 362, 45–48 (1993).
    ADS CAS Google Scholar
  18. van Bennekom, A. J. et al. Primary productivity and the silica cycle in the southern ocean (Atlantic sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 67, 19–30 (1988).
    Google Scholar
  19. Frank, M. Reconstruction of late Quaternary environmental conditions applying the natural radionuclides 230Th, 10Be, 231Pa and 238U: A study of deep-sea sediments from the eastern sector of the Antarctic Circumpolar Current system.Thesis, Heidelberg Univ.((1995)).
  20. Burckle, L. H. Diatom distribution and paleoceanographic reconstruction in the southern ocean: Implications for late Quaternary paleoceanography. Mar. Micropaleontol. 9, 241–261 (1984).
    Google Scholar
  21. Morley, J. J. Variations in high-latitude oceanographic fronts in the southern Indian Ocean: An estimation based on faunal changes. Paleoceanography 4, 547–554 (1989).
    Google Scholar
  22. Sullivan, C. W. et al. Distribution of phytoplankton blooms in the southern ocean. Science 262, 1832–1837 (1993).
    Google Scholar
  23. Bacon, M. P. Tracers of chemical scavenging in the ocean: boundary effects and large scale chemical fractionation. Phil. Trans. R. Soc. Lond. A 320, 187–200 (1988).
    Google Scholar
  24. Anderson, R. F. et al. Boundary scavenging in the Pacific Ocean: a comparison of 10Be and 231Pa. Earth Planet. Sci. Lett. 96, 287–304 (1990).
    Google Scholar
  25. Yu, E.-F. Variations in the particulate flux of 230Th and 231Pa and paleoceanographic applications of the 231Pa/230Th ratio.Thesis, WHOI-MIT((1994)).
  26. Walter, H.-J., Rutgers van der Loeff, M. M. & Hoeltzen, H. Enhanced scavenging of 231Pa relative to 230Th in the south Atlantic south of the Polar Front: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth Planet. Sci. Lett. 149, 85–100 (1997).
    Google Scholar
  27. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).
    ADS CAS Google Scholar
  28. Klinkhammer, G. & Palmer, M. R. Uranium in the oceans, where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991).
    Google Scholar
  29. Bareille, G. et al. Glacial-Interglacial changes in the accumulation rates of major biogenic components in southern Indian Ocean sediments. J. Mar. Syst. (in the press).
  30. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: A geochemical indicator of paleoproductivity. Paleoceanography 7, 163–181 (1992).
    Google Scholar
  31. Francois, R. et al. Biogenic Ba fluxes to the deep-sea: Implications for the paleoproductivity reconstruction. Glob. Biogeochem. Cycles 9, 289–303 (1995).
    Google Scholar
  32. Nurnberg, C. C. Bariumfluss und sedimentation im sudlichen Sudatlantik-Hinweise auf produktivitatsanderungen im Quartar.Thesis, Kiel Univ.((1995)).
  33. Sigman, D. M. et al. in _ASLO, Aquatic Sci. Meeting Abstr._Santa Fe, New Mexico, 304 ((1997)).
    Google Scholar
  34. Sigman, D. M. The role of biological production in Pleistocene atmospheric carbon dioxide variations and the nitrogen isotope dynamics of the Southern Ocean.Thesis, WHOI-MIT((1997)).
  35. GEOSECS Sections and Profiles (National Science Foundation, WashingtonD, (1982)).
  36. Sigman, D. M. et al. Diatom microfossil nitrogen isotopic composition supports the hypothesis of higher nitrate utilization in the glacial southern ocean. Eos 78, S190 (1997).
    Google Scholar
  37. Shemesh, A. et al. Isotopic evidence for reduced productivity in the glacial southern ocean. Science 262, 407–410 (1993).
    Google Scholar
  38. Morley, J. J. & Hays, J. D. Oceanographic conditions associated with the high abundance of radiolarian Cyclodophora davisiana. Earth Planet. Sci. Lett. 66, 63–72 (1983).
    Google Scholar
  39. Yang, J. & Honjo, S. J. Modeling the near-freezing dichothermal layer in the sea of Okhotsk and its interannual variations. J. Geophys. Res. 101, 16421–16433 (1996).
    Google Scholar
  40. Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., Walsh, I. D. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps and surface sediments. Paleoceanography 11, 679–700 (1996).
    Google Scholar
  41. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer Academic, Norwell, MA, (1990)).
    Google Scholar
  42. Sigman, D. & McCorkle, D. Comparing the closed and open system effects of changes in low latitude biological production using a reservoir model of the ocean carbon cycle. Eos 75, 367 (1994).
    Google Scholar
  43. Keir, R. S. On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–445 (1988).
    Google Scholar
  44. Lynch-Stieglitz, J., van Geen, A. & Fairbanks, R. G. Interocean exchange of Glacial North Atlantic Intermediate Water: Evidence from Subantarctic Cd/Ca and carbon isotope measurements. Paleoceanography 11, 191–202 (1996).
    Google Scholar
  45. Michel, E. et al. Could deep Subantarctic convection feed the world deep basins during the last glacial maximum? Paleoceanography 10, 927–942 (1995).
    Google Scholar
  46. Kellogg, T. B. Glacial-Interglacial changes in global deepwater circulation. Paleoceanography 2, 259–271 (1987).
    Google Scholar
  47. McCorkle, D. C. et al. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau. Paleoceanography 10, 699–714 (1995).
    Google Scholar
  48. Howard, W. R. & Prell, W. L. Late Quaternary CaCO3production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9, 453–482 (1994).
    Google Scholar
  49. Bareille, G. Flux sedimentaires: paléproductivité et paléocirculation de l'Océan Austral au cours des 150,000 dernières années.Thesis, Univ. Bordeaux((1994)).

Download references