Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice (original) (raw)

References

  1. Hummel, K. P. & Chapman, D. B. Visceral inversion and associated anomalies in the mouse. J. Hered. 50, 9– 13 (1959).
    Article Google Scholar
  2. Layton, W. M. Random determination of a developmental process. J. Hered. 67, 336–338 (1976).
    Article Google Scholar
  3. McNeish, J. D. et al. Phenotypic characterization of the transgenic mouse insertional mutation Legless. J. Exp. Zool. 253, 151–162 (1990).
    Article CAS Google Scholar
  4. Singh, G. et al. legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev. 5, 2245–2255 (1991).
    Article CAS Google Scholar
  5. Lowe, L. A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).
    Article ADS CAS Google Scholar
  6. Meno, C. et al. Left–right asymmetric expression of the TGFβ-family member lefty in mouse embryos. Nature 381, 151–155 (1996).
    Article ADS CAS Google Scholar
  7. Lohr, J. L., Danos, M. C. & Yost, H. J. Left-right asymmetry of a _nodal_-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124, 1465– 1472 (1997).
    CAS PubMed Google Scholar
  8. Afzelius, B. A. Ahuman syndrome caused by immotile cilia. Science 193 , 317–319 (1976).
    Article ADS CAS Google Scholar
  9. Afzelius, B. A. Situs inversus and ciliary abnormalities: What is the connection? Int. J. Dev. Biol. 39, 839–844 (1995).
    CAS PubMed Google Scholar
  10. Holzbaur, E. L. F. & Vallee, R. B. Dyneins: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).
    Article CAS Google Scholar
  11. Asai, D. J. Multi-dynein hypothesis. Cell Motil. Cytoskel. 32, 129–132 (1995).
    Article CAS Google Scholar
  12. Tanaka, Y., Zhang, Z. & Hirokawa, N. Identification and molecular evolution of new dynein-like protein sequences in rat brain. J. Cell Sci. 108, 1883–1893 (1995).
    CAS PubMed Google Scholar
  13. Vaughan, K. T. et al. Multiple mouse chromosomal loci for dynein-based motility. Genomics 36, 29–38 (1996).
    Article CAS Google Scholar
  14. Andrews, K. L., Nettesheim, P., Asai, D. J. & Ostrowski, L. E. Identification of seven rat axonemal dynein heavy chain genes: expression during ciliated cell differentiation. Mol. Biol. Cell 7, 71–79 (1996).
    Article CAS Google Scholar
  15. McGrath, J., Horwich, A. L. & Brueckner, M. Duplication/deficiency mapping of situs inversus viscerum (iv), a gene that determines left–right asymmetry in the mouse. Genomics 14, 643– 648 (1992).
    Article CAS Google Scholar
  16. Asai, D. J. et al. The dynein genes of Paramecium tetraurelia: sequencies adjacent to the catalytic P-loop identify cytoplasmic and axonemal heavy chain isoforms. J. Cell Sci. 107, 839– 847 (1994).
    CAS PubMed Google Scholar
  17. Brueckner, M., D'Eustachio, P. & Horwich, A. L. Linkage mapping of a mouse gene, iv, that controls left–right asymmetry of the heart and viscera. Proc. Natl Acad. Sci. USA 86, 5035– 5038 (1989).
    Article ADS CAS Google Scholar
  18. Bellomo, D., Lander, A., Harragan, I. & Brown, N. A. Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev. Dyn. 205, 471–485 (1996).
    Article CAS Google Scholar
  19. Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–841 (1996).
    Article CAS Google Scholar
  20. Theurkauf, W. E. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol. 165, 352–360 (1994).
    Article CAS Google Scholar
  21. Jesuthasan, S. & Strahle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol. 7, 31–42 (1996 ).
    Article Google Scholar
  22. Danos, M. C. & Yost, H. J. Linkage of cardiac left-right asymmetry and dorsal–anterior development in Xenopus. Development 121, 1467–1474 ( 1995).
    CAS PubMed Google Scholar
  23. Hyatt, B. A., Lohr, J. L. & Yost, H. J. Initiation of vertebrate left–right axis formation by maternal Vg1. Nature 384, 62– 65 (1996).
    Article ADS CAS Google Scholar
  24. Elisha, Z., Havin, L., Ringel, I. & Yisraeli, J. K. Vg1 RNA binding protein mediates the association of Vg1 RNA with microtubules in Xenopus oocytes. EMBO J. 14, 5109–5114 (1995).
    Article CAS Google Scholar
  25. Brown, N. A., McCarthy, A. & Wolpert, L. Development of handed body asymmetry in mammals. Ciba Found. Symp. 162, 182–201 (1991).
    CAS PubMed Google Scholar
  26. Supp, D. M., Witte, D. P., Branford, W. W., Smith, E. P. & Potter, S. S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol. 176, 284–299 (1996).
    Article CAS Google Scholar
  27. Segre, J. A., Nemhauser, J. L., Taylor, B. A., Nadeau, J. H. & Lander, E. S. Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 28, 549–559 (1995).
    Article CAS Google Scholar
  28. Kern, M. J., Witte, D. P., Valerius, M. T., Aronow, B. J. & Potter, S. S. Anovel murine homeobox gene isolated by a tissue specific PCR cloning strategy. Nucleic Acids Res. 20, 5189–5195 (1992).
    Article CAS Google Scholar

Download references