Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice (original) (raw)
References
Hummel, K. P. & Chapman, D. B. Visceral inversion and associated anomalies in the mouse. J. Hered.50, 9– 13 (1959). Article Google Scholar
Layton, W. M. Random determination of a developmental process. J. Hered.67, 336–338 (1976). Article Google Scholar
McNeish, J. D. et al. Phenotypic characterization of the transgenic mouse insertional mutation Legless. J. Exp. Zool.253, 151–162 (1990). ArticleCAS Google Scholar
Singh, G. et al. legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev.5, 2245–2255 (1991). ArticleCAS Google Scholar
Lowe, L. A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature381, 158–161 (1996). ArticleADSCAS Google Scholar
Meno, C. et al. Left–right asymmetric expression of the TGFβ-family member lefty in mouse embryos. Nature381, 151–155 (1996). ArticleADSCAS Google Scholar
Lohr, J. L., Danos, M. C. & Yost, H. J. Left-right asymmetry of a _nodal_-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development124, 1465– 1472 (1997). CASPubMed Google Scholar
Afzelius, B. A. Ahuman syndrome caused by immotile cilia. Science193 , 317–319 (1976). ArticleADSCAS Google Scholar
Afzelius, B. A. Situs inversus and ciliary abnormalities: What is the connection? Int. J. Dev. Biol.39, 839–844 (1995). CASPubMed Google Scholar
Holzbaur, E. L. F. & Vallee, R. B. Dyneins: molecular structure and cellular function. Annu. Rev. Cell Biol.10, 339–372 (1994). ArticleCAS Google Scholar
Asai, D. J. Multi-dynein hypothesis. Cell Motil. Cytoskel.32, 129–132 (1995). ArticleCAS Google Scholar
Tanaka, Y., Zhang, Z. & Hirokawa, N. Identification and molecular evolution of new dynein-like protein sequences in rat brain. J. Cell Sci.108, 1883–1893 (1995). CASPubMed Google Scholar
Vaughan, K. T. et al. Multiple mouse chromosomal loci for dynein-based motility. Genomics36, 29–38 (1996). ArticleCAS Google Scholar
Andrews, K. L., Nettesheim, P., Asai, D. J. & Ostrowski, L. E. Identification of seven rat axonemal dynein heavy chain genes: expression during ciliated cell differentiation. Mol. Biol. Cell7, 71–79 (1996). ArticleCAS Google Scholar
McGrath, J., Horwich, A. L. & Brueckner, M. Duplication/deficiency mapping of situs inversus viscerum (iv), a gene that determines left–right asymmetry in the mouse. Genomics14, 643– 648 (1992). ArticleCAS Google Scholar
Asai, D. J. et al. The dynein genes of Paramecium tetraurelia: sequencies adjacent to the catalytic P-loop identify cytoplasmic and axonemal heavy chain isoforms. J. Cell Sci.107, 839– 847 (1994). CASPubMed Google Scholar
Brueckner, M., D'Eustachio, P. & Horwich, A. L. Linkage mapping of a mouse gene, iv, that controls left–right asymmetry of the heart and viscera. Proc. Natl Acad. Sci. USA86, 5035– 5038 (1989). ArticleADSCAS Google Scholar
Bellomo, D., Lander, A., Harragan, I. & Brown, N. A. Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev. Dyn.205, 471–485 (1996). ArticleCAS Google Scholar
Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol.133, 831–841 (1996). ArticleCAS Google Scholar
Theurkauf, W. E. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol.165, 352–360 (1994). ArticleCAS Google Scholar
Jesuthasan, S. & Strahle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol.7, 31–42 (1996 ). Article Google Scholar
Danos, M. C. & Yost, H. J. Linkage of cardiac left-right asymmetry and dorsal–anterior development in Xenopus. Development121, 1467–1474 ( 1995). CASPubMed Google Scholar
Hyatt, B. A., Lohr, J. L. & Yost, H. J. Initiation of vertebrate left–right axis formation by maternal Vg1. Nature384, 62– 65 (1996). ArticleADSCAS Google Scholar
Elisha, Z., Havin, L., Ringel, I. & Yisraeli, J. K. Vg1 RNA binding protein mediates the association of Vg1 RNA with microtubules in Xenopus oocytes. EMBO J.14, 5109–5114 (1995). ArticleCAS Google Scholar
Brown, N. A., McCarthy, A. & Wolpert, L. Development of handed body asymmetry in mammals. Ciba Found. Symp.162, 182–201 (1991). CASPubMed Google Scholar
Supp, D. M., Witte, D. P., Branford, W. W., Smith, E. P. & Potter, S. S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol.176, 284–299 (1996). ArticleCAS Google Scholar
Segre, J. A., Nemhauser, J. L., Taylor, B. A., Nadeau, J. H. & Lander, E. S. Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics28, 549–559 (1995). ArticleCAS Google Scholar
Kern, M. J., Witte, D. P., Valerius, M. T., Aronow, B. J. & Potter, S. S. Anovel murine homeobox gene isolated by a tissue specific PCR cloning strategy. Nucleic Acids Res.20, 5189–5195 (1992). ArticleCAS Google Scholar