Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures (original) (raw)
1. Zoghbi, H. Y. & Orr, H. T. Spinocerebellar ataxia type 1. Semin. Cell Biol.6, 29–35 (1995). ArticleCAS Google Scholar
2. Ross, C. A. When more is less: Pathogenesis of glutamine repeat neurodegenerative diseases. Neuron15, 493–496 (1995). ArticleCAS Google Scholar
3. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell82, 937–948 (1995). ArticleCAS Google Scholar
4. Stuurman, N. et al. Amonoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J. Cell Sci.101, 773–784 (1992). PubMed Google Scholar
5. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell76, 345–356 (1994). ArticleCAS Google Scholar
6. Koken, M. H. et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J.13, 1073–1083 (1994). ArticleCAS Google Scholar
7. Dyck, J. A. et al. Anovel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell76, 333–343 (1994). ArticleCAS Google Scholar
8. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet.10, 94–98 (1995). ArticleCAS Google Scholar
9. Matilla, A. et al. Ataxin-1, the SCA1 gene product, is required for learning tasks mediated by both the hippocampus and cerebellum. Proc. Natl Acad. Sci. USA(submitted).
10. Robitaille, Y., Schut, L. & Kish, S. J. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neropathol.90, 572–581 (1995). ArticleCAS Google Scholar
11. Spector, D. L. Macromolecular domains within the cell nucleus. Annu Rev. Cell Biol.9, 265–315 (1993). ArticleCAS Google Scholar
12. Fu, X. D. & Maniatis, T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature343, 437–441 (1990). ArticleADSCAS Google Scholar
13. Raska, I. et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res.195, 27–37 (1991). ArticleCAS Google Scholar
14. Dhordain, P. et al. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene11, 2689–2697 (1995). CASPubMed Google Scholar
15. Bisotto, S., Lauriault, P., Duval, M. & Vincent, M. Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes. J. Cell Sci.108, 1873–1882 (1995). CASPubMed Google Scholar
16. Roizin, S. S. & Liu, J. C. Neuronal nuclear-cytoplasmic changes in Huntington's Chorea: electron microscope investigations. Adv. Neurol.23, 95–122 (1979). Google Scholar
17. Tellez-Nagel, I., Johnson, A. B. & Terry, R. D. Studies on brain biopsies of patients with Huntington's chorea. J. Neuropathol. Exp. Neurol.33, 308–332 (1974). ArticleCAS Google Scholar
18. Roos, R. A. C. & Bots, G. T. A. M. Nuclear membrane indentations in Huntington's Chorea. J. Neurol. Sci.61, 37–47 (1983). ArticleCAS Google Scholar
19. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron19, 333–344 (1997). ArticleCAS Google Scholar
20. Davies, S. W. et al. Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell90, 537–548 (1997). ArticleCAS Google Scholar
21. Matilla, A. et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature389, 974–978 (1997). ArticleADSCAS Google Scholar
22. Cattoretti, G. et al. Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. J. Pathol.171, 83–98 (1993). ArticleCAS Google Scholar
23. Banfi, S. et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet7, 513–520 (1994). ArticleCAS Google Scholar
24. Ausubel, F. M. et al. in Current Protocols in Molecular Biology 9.2.1–9.2.3 (John Wiley, New York, (1996)). Google Scholar
25. Andrade, L. E., Tan, E. M. & Chan, E. K. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl Acad. Sci. USA90, 1947–1951 (1993). ArticleADSCAS Google Scholar
26. Chan, E. K., Takano, S., Andrade, L. E., Hamel, J. C. & Matera, A. G. Structure, expression and chromosomal localization of human p80-coilin gene. Nucleic Acids Res.22, 4462–4469 (1994). ArticleCAS Google Scholar
27. Tawfic, S. & Ahmed, K. Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J. Biol. Chem.69, 7489–7493 (1994). Google Scholar
28. Fey, E. G. & Penman, S. Nuclear matrix proteins reflect cell type origin in cultured human cells. Proc. Natl Acad. Sci. USA85, 121–125 (1988). ArticleADSCAS Google Scholar
29. Berezney, R. & Coffey, D. S. Nuclear matrix isolation and characterization of a framework structure from rat liver nuclei. J. Cell Biol.73, 616–632 (1977). ArticleCAS Google Scholar