Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension (original) (raw)

References

  1. Somlyo, A. P. & Somlyo, A. V. Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994).
    Article ADS CAS Google Scholar
  2. Somlyo, A. P. et al. Modulation of Ca2+-sensitivity and of the time course of contraction in smooth muscle: A major role of protein phosphatase? Adv. Prot. Phosphat. 5, 181–195 (1989).
    CAS Google Scholar
  3. Kitazawa, T., Masuo, M. & Somlyo, A. P. GProtein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl Acad. Sci. USA 88, 9307–9310 (1991).
    Article ADS CAS Google Scholar
  4. Hirata, K. et al. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J. Biol. Chem. 267, 8719–8722 (1992).
    CAS PubMed Google Scholar
  5. Gong, M. C. et al. Role of guanine nucleotide-binding proteins, ras-family or trimeric proteins or both in Ca2+ sensitization of smooth muscle. Proc. Natl Acad. Sci. USA 93, 1340–1345 (1996).
    Article ADS CAS Google Scholar
  6. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) Science 273, 245–248 (1996).
    Article ADS CAS Google Scholar
  7. Ishizaki, T. et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15, 1885–1893 (1996).
    Article CAS Google Scholar
  8. Kitazawa, T., Kobayashi, S., Horiuti, K., Somlyo, A. V. & Somlyo, A. P. Receptor-coupled, permeabilized smooth muscle. J. Biol. Chem. 264, 5339–5342 (1989).
    CAS PubMed Google Scholar
  9. Ishihara, H. et al. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159, 871–877 (1989).
    Article CAS Google Scholar
  10. Saitoh, M., Ishikawa, T., Matushima, S., Naka, M. & Hidaka, H. Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J. Biol. Chem. 262, 7796–7801 (1987).
    CAS PubMed Google Scholar
  11. Leung, T., Manser, E., Tan, L. & Lim, L. Anovel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054 (1995).
    Article CAS Google Scholar
  12. Matsui, T. et al. Rho-associated kinase, a novel serine threonine kinase, as a putative target for the small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).
    Article CAS Google Scholar
  13. Nakagawa, O. et al. ROCK-I and ROCK-II; two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392, 189–193 (1996).
    Article CAS Google Scholar
  14. Manser, E. et al. Abrain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).
    Article ADS CAS Google Scholar
  15. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).
    Article CAS Google Scholar
  16. Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 (1997).
    Article CAS Google Scholar
  17. Leung, T., Chen, X.-Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327 (1996).
    Article CAS Google Scholar
  18. Amano, M. et al. Formation of actin stress fibres and focal adhesions enhanced by Rho-kinase. Science 275, 1308–1311 (1997).
    Article CAS Google Scholar
  19. Narumiya, S. The small GTPase Rho: cellular functions and signal transduction. J. Biochem. 120, 215–228 (1996).
    Article CAS Google Scholar
  20. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).
    Article CAS Google Scholar
  21. Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997).
    Article CAS Google Scholar
  22. Satoh, H. & Inui, J. Endothelial cell-dependent relaxation and contraction induced by histimine in the isolated guinea-pig pulmonary artery. Eur. J. Pharmacol. 97, 321–324 (1984).
    Article CAS Google Scholar
  23. Kobayashi, S., Kitazawa, T., Somlyo, A. V. & Somlyo, A. P. Cytosolic heparin inhibits muscarinic and α-adrenergic Ca2+ release in smooth muscle. J. Biol. Chem. 264, 17997–18004 (1989).
    CAS PubMed Google Scholar
  24. Bagrodia, S. et al. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem. 270, 22731–22737 (1995).
    Article CAS Google Scholar
  25. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S. & Nishizuka, Y. calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties. J. Biol. Chem. 257, 13341–13348 (1982).
    CAS PubMed Google Scholar
  26. Adelstein, R. S. & Klee, C. B. Purification of smooth muscle myosin light chain kinase. Meth. Enzym. 85, 298–308 (1985).
    Article Google Scholar
  27. Takayasu, M. et al. The effects of HA compound calcium antagonists on delayed cerebral vasospasm in dogs. J. Neurosurg. 65, 80–85 (1986).
    Article CAS Google Scholar
  28. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 9, 5036–5041 (1984).
    Article Google Scholar
  29. Bubin, C. S., Erlichman, J. & Rosen, O. M. Cyclic AMP-dependent protein kinase from bovine heart muscle. Meth. Enzymol. 38, 308–315 (1974).
    Article Google Scholar

Download references