X-linked IAP is a direct inhibitor of cell-death proteases (original) (raw)

References

  1. Clem, R. J. & Miller, L. K. Control of programmed cell death by the baculovirus genes p35 and iap. Mol. Cell. Biol. 14, 5212–5222 (1994).
    Google Scholar
  2. Roy, N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178 (1995).
    Google Scholar
  3. Rothe, M., Pan, M.-G., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).
    Google Scholar
  4. Duckett, C. S. et al. Aconserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694 (1996).
    Google Scholar
  5. Uren, A. G., Pakusch, M., Hawkins, C. J., Puls, K. L. & Vaux, D. L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl Acad. Sci. USA 93, 4974–4978 (1996).
    Google Scholar
  6. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).
    Google Scholar
  7. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).
    Google Scholar
  8. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).
    Google Scholar
  9. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).
    Google Scholar
  10. Martin, S. J. & Green, D. R. Protease activation during apopotosis: death by a thousand cuts? Cell 82, 349–352 (1995).
    Google Scholar
  11. Muzio, M. et al. Flice, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).
    Google Scholar
  12. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85, 803–815 (1996).
    Google Scholar
  13. Srinivasula, S., Ahmad, M., Fernandes-Alnemri, T., Litwack, G. & Alnemri, E. S. Molecular ordering of the fas-apoptotic pathway: The fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl Acad. Sci. USA 93, 14486–14491 (1996).
    Google Scholar
  14. Muzio, M., Salvesen, G. S. & Dixit, V. M. FLICE induced apoptosis in a cell-free system. J. Biol. Chem. 272, 2952–2956 (1997).
    Google Scholar
  15. Martin, S. J. et al. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J. 14, 5191–5200 (1995).
    Google Scholar
  16. Quan, L. T. et al. Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc. Natl Acad. Sci. USA 93, 1972–1976 (1996).
    Google Scholar
  17. Zhou, Q. et al. Target protease specificity of the viral serpin CrmA: analysis of five caspases. J. Biol. Chem. 272, 7797–7800 (1997).
    Google Scholar
  18. Bertin, J. et al. Apoptotic suppression by baculovirus p35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J. Virol. 70, 6251–6259 (1996).
    Google Scholar
  19. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).
    Google Scholar
  20. Weil, M. et al. Constitutive expression of the machinery for programmed cell death. J. Cell Biol. 133, 1053–1059 (1996).
    Google Scholar
  21. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).
    Google Scholar
  22. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).
    Article ADS CAS Google Scholar
  23. Yamakawa, T. et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).
    Google Scholar
  24. Hanada, M., Aimé-Sempé, C., Sato, T. & Reed, J. C. Structure–function analysis of Bcl-2 protein: identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem. 270, 11962–11968 (1995).
    Google Scholar
  25. Sato, T., Irie, S. & Reed, J. C. Anovel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Lett. 358, 113–118 (1995).
    Google Scholar
  26. Deveraux, Q., van Nocker, S., Mahaffey, D., Vierstra, R. & Rechsteiner, M. Inhibition of ubiquitin-mediated proteolysis by the Arabidopsis 26S protease subunit S5a. J. Biol. Chem. 270, 29660–29663 (1995).
    Google Scholar
  27. Krajewski, S. et al. Immunolocalization of the ICE/Ced-3-family protease, CPP32 (caspase-3), in non-Hodgkin's lymphomas (NHLs), chronic lymphocytic leukemias (CLL), and reactive lymph nodes. Blood (in the press).
  28. Orth, K., O'Rourke, K., Salvesen, G. S. & Dixit, V. M. Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J. Biol. Chem. 271, 20977–20980 (1996).
    Google Scholar

Download references