The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol (original) (raw)
References
Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol.14, 19–57 (1998). ArticleCAS Google Scholar
Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996). ArticleADSCAS Google Scholar
Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J.18, 2970–2981 (1999). ArticleCAS Google Scholar
Leonhard, K. et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell5, 629–638 (2000). ArticleCAS Google Scholar
Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature388, 75–78 (1997). ArticleCAS Google Scholar
Latterich, M., Fröhlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell82, 885–893 (1995). ArticleCAS Google Scholar
Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97 and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell82, 905–914 (1995). ArticleCAS Google Scholar
Acharya, U. et al. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell82, 895–904 (1995). ArticleCAS Google Scholar
Ghislain, M., Dohmen, R., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin mediated proteolysis in Saccharomyces cerevisiae. EMBO J.15, 4884–4899 (1996). ArticleCAS Google Scholar
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell96, 635–644 (1999). ArticleCAS Google Scholar
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102, 577–586 (2000). ArticleCAS Google Scholar
Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem.270, 17442–17456 (1995). ArticleCAS Google Scholar
DeHoratius, C. & Silver, P. A. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiaeNPL4 gene. Mol. Biol. Cell7, 1835–1855 (1996). ArticleCAS Google Scholar
Hitchcock, A. L. et al. The conserved Npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell12, 3226–3241 (2001). ArticleCAS Google Scholar
Dai, R., Chen, E., Longo, D. L., Gorbea, C. M. & Li, C. C. Involvement of valosin-containing protein, an ATPase co-purified with Iκbα and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IκBα. J. Biol. Chem.273, 3562–3573 (1998). ArticleCAS Google Scholar
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439 (2000). ArticleCAS Google Scholar
Casagrande, R. et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell5, 729–735 (2000). ArticleCAS Google Scholar
Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science273, 1725–1728 (1996). ArticleADSCAS Google Scholar
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J.19, 2181–2192 (2000). ArticleCAS Google Scholar
Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol.147, 45–57 (1999). ArticleCAS Google Scholar
Lamb, J. R., Fu, V., Wirtz, E. & Bangs, J. D. Functional analysis of the trypanosomal AAA protein _Tb_VCP with _Trans_-dominant ATP hydrolysis mutants. J. Biol. Chem.276, 21512–21520 (2001). ArticleCAS Google Scholar
Meyer, H. H., Kondo, H. & Warren, G. The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett.437, 255–257 (1998). ArticleCAS Google Scholar
Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from the ER into the cytosol. Mol. Biol. Cell12, 2546–2555 (2001). ArticleCAS Google Scholar
Dai, R. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nature Cell Biol.3, 740–744 (2001). ArticleCAS Google Scholar
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell6, 1473–1484 (2000). ArticleCAS Google Scholar
Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell101, 589–600 (2000). ArticleCAS Google Scholar
Schmidt, M., Lupas, A. N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol.3, 584–591 (1999). ArticleCAS Google Scholar
Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of Prepro-α factor across the ER membrane. Cell97, 553–564 (1999). ArticleCAS Google Scholar
Thuret, J., Valay, J., Faye, G. & Mann, C. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell86, 565–576 (1996). ArticleCAS Google Scholar
Deshaies, R. J. & Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol.105, 633–645 (1987). ArticleCAS Google Scholar