The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol (original) (raw)

References

  1. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57 (1998).
    Article CAS Google Scholar
  2. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).
    Article ADS CAS Google Scholar
  3. Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18, 2970–2981 (1999).
    Article CAS Google Scholar
  4. Leonhard, K. et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5, 629–638 (2000).
    Article CAS Google Scholar
  5. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).
    Article CAS Google Scholar
  6. Latterich, M., Fröhlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).
    Article CAS Google Scholar
  7. Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97 and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).
    Article CAS Google Scholar
  8. Acharya, U. et al. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell 82, 895–904 (1995).
    Article CAS Google Scholar
  9. Ghislain, M., Dohmen, R., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15, 4884–4899 (1996).
    Article CAS Google Scholar
  10. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).
    Article CAS Google Scholar
  11. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).
    Article CAS Google Scholar
  12. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
    Article CAS Google Scholar
  13. DeHoratius, C. & Silver, P. A. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene. Mol. Biol. Cell 7, 1835–1855 (1996).
    Article CAS Google Scholar
  14. Hitchcock, A. L. et al. The conserved Npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001).
    Article CAS Google Scholar
  15. Dai, R., Chen, E., Longo, D. L., Gorbea, C. M. & Li, C. C. Involvement of valosin-containing protein, an ATPase co-purified with Iκbα and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IκBα. J. Biol. Chem. 273, 3562–3573 (1998).
    Article CAS Google Scholar
  16. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).
    Article CAS Google Scholar
  17. Casagrande, R. et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735 (2000).
    Article CAS Google Scholar
  18. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).
    Article ADS CAS Google Scholar
  19. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
    Article CAS Google Scholar
  20. Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–57 (1999).
    Article CAS Google Scholar
  21. Lamb, J. R., Fu, V., Wirtz, E. & Bangs, J. D. Functional analysis of the trypanosomal AAA protein _Tb_VCP with _Trans_-dominant ATP hydrolysis mutants. J. Biol. Chem. 276, 21512–21520 (2001).
    Article CAS Google Scholar
  22. Meyer, H. H., Kondo, H. & Warren, G. The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett. 437, 255–257 (1998).
    Article CAS Google Scholar
  23. Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from the ER into the cytosol. Mol. Biol. Cell 12, 2546–2555 (2001).
    Article CAS Google Scholar
  24. Dai, R. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).
    Article CAS Google Scholar
  25. Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).
    Article CAS Google Scholar
  26. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).
    Article CAS Google Scholar
  27. Schmidt, M., Lupas, A. N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol. 3, 584–591 (1999).
    Article CAS Google Scholar
  28. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of Prepro-α factor across the ER membrane. Cell 97, 553–564 (1999).
    Article CAS Google Scholar
  29. Thuret, J., Valay, J., Faye, G. & Mann, C. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86, 565–576 (1996).
    Article CAS Google Scholar
  30. Deshaies, R. J. & Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645 (1987).
    Article CAS Google Scholar

Download references