Catterall, W. A. Molecular properties of sodium and calcium channels. J. Bioenerg. Biomembr.28, 219–230 (1996). ArticleCAS Google Scholar
Jan, L. Y. & Jan, Y. N. Voltage-gated and inwardly rectifying potassium channels. J. Physiol.505, 267–282 (1997). ArticleCAS Google Scholar
Philipson, K. D. & Nicoll, D. A. Sodium–calcium exchange: a molecular perspective. Annu. Rev. Physiol.62, 111–133 (2000). ArticleCAS Google Scholar
Marban, E., Yamagishi, T. & Tomaselli, G. F. Structure and function of voltage-gated sodium channels. J. Physiol.508, 647–657 (1998). ArticleCAS Google Scholar
Zeng, J. & Rudy, Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys. J.68, 949–964 (1995). ArticleADSCAS Google Scholar
Robbins, J. KCNQ channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther.90, 1–19 (2001). ArticleCAS Google Scholar
Näbauer, M., Beuckelmann, D. J. & Erdmann, E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ. Res.73, 386–394 (1993). Article Google Scholar
Hoppe, U. C. et al. Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ. Res.84, 964–972 (1999). ArticleCAS Google Scholar
Papp, Z. et al. Two components of [Ca2+]i-activated Cl− current during large [Ca2+]i transients in single rabbit heart Purkinje cells. J. Physiol.483, 319–330 (1995). ArticleCAS Google Scholar
Koster, O. F., Szigeti, G. P. & Beuckelmann, D. J. Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+. Cardiovasc. Res.41, 175–187 (1999). ArticleCAS Google Scholar
Kääb, S. et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation98, 1383–1393 (1998). Article Google Scholar
Näbauer, M. et al. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation93, 168–177 (1996). Article Google Scholar
Hoppe, U. C., Marban, E. & Johns, D. C. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J. Clin. Invest.105, 1077–1084 (2000). ArticleCAS Google Scholar
Winslow, R. L., Rice, J. & Jafri, S. Modeling the cellular basis of altered excitation–contraction coupling in heart failure. Prog. Biophys. Mol. Biol.69, 497–514 (1998). ArticleCAS Google Scholar
Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell104, 569–580 (2001). ArticleCAS Google Scholar
Yue, D. T. & Marban, E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch.413, 127–133 (1988). ArticleCAS Google Scholar
Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol.13, 422–428 (2001). ArticleCAS Google Scholar
Kim, D. et al. Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ. Res.82, 513–518 (1998). ArticleCAS Google Scholar
Luo, C. H. & Rudy, Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res.74, 1071–1096 (1994). ArticleCAS Google Scholar
Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol.118, 348–360 (1952). ArticleCAS Google Scholar
Nichols, C. G., Ripoll, C. & Lederer, W. J. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ. Res.68, 280–287 (1991). ArticleCAS Google Scholar
Marban, E., Robinson, S. W. & Wier, W. G. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest.78, 1185–1192 (1986). ArticleCAS Google Scholar
Cranefield, P. F. & Aronson, R. S. Torsades de pointes and early afterdepolarizations. Cardiovasc. Drugs Ther.5, 531–537 (1991). ArticleCAS Google Scholar
Saffitz, J. E., Laing, J. G. & Yamada, K. A. Connexin expression and turnover: implications for cardiac excitability. Circ. Res.86, 723–728 (2000). ArticleCAS Google Scholar
Berenfeld, O. & Jalife, J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ. Res.82, 1063–1077 (1998). ArticleCAS Google Scholar
Hoffman, B. F. & Rosen, M. R. Cellular mechanisms for cardiac arrhythmias. Circ. Res.49, 1–15 (1981). ArticleCAS Google Scholar
Samie, F. H. & Jalife, J. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc. Res.50, 242–250 (2001). ArticleCAS Google Scholar
Camm, A. J. et al. Congenital and acquired long QT syndrome. Eur. Heart J.21, 1232–1237 (2000). ArticleCAS Google Scholar
Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell80, 805–811 (1995). ArticleCAS Google Scholar
Sanguinetti, M. C. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. NY Acad. Sci.868, 406–413 (1999). ArticleADSCAS Google Scholar
Dumaine, R. et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ. Res.78, 916–924 (1996). ArticleCAS Google Scholar
Hoppe, U. C., Marban, E. & Johns, D. C. Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1. Proc. Natl Acad. Sci. USA98, 5335–5340 (2001). ArticleADSCAS Google Scholar
Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation102, 1178–1185 (2000). ArticleCAS Google Scholar
Schwartz, P. J. et al. Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation103, 89–95 (2001). ArticleCAS Google Scholar
Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell105, 511–519 (2001). ArticleCAS Google Scholar
Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature392, 293–296 (1998). ArticleADSCAS Google Scholar
Antzelevitch, C. The Brugada syndrome: ionic basis and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol.12, 268–272 (2001). ArticleCAS Google Scholar
Rook, M. B. et al. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc. Res.44, 507–517 (1999). ArticleCAS Google Scholar
Dumaine, R. et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ. Res.85, 803–809 (1999). ArticleCAS Google Scholar
Wang, Y. & Rudy, Y. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol.278, H1019–H1029 (2000). ArticleCAS Google Scholar
Schott, J. J. et al. Cardiac conduction defects associate with mutations in SCN5A. Nature Genet.23, 20–21 (1999). ArticleCAS Google Scholar
Tan, H. L. et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature409, 1043–1047 (2001). ArticleADSCAS Google Scholar
Veldkamp, M. W. et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ. Res.86, E91–E97 (2000). ArticleCAS Google Scholar
Marban, E. Heart failure: the electrophysiologic connection. J. Cardiovasc. Electrophysiol.10, 1425–1428 (1999). ArticleCAS Google Scholar
Beuckelmann, D. J., Näbauer, M. & Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res.73, 379–385 (1993). ArticleCAS Google Scholar
Kääb, S. et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res.78, 262–273 (1996). Article Google Scholar
Berger, R. D. et al. Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation96, 1557–1565 (1997). ArticleCAS Google Scholar
Studer, R. et al. Gene expression of the cardiac Na+–Ca2+ exchanger in end-stage human heart failure. Circ. Res.75, 443–453 (1994). ArticleCAS Google Scholar
Winslow, R. L. et al. Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ. Res.84, 571–586 (1999). ArticleCAS Google Scholar
Sanguinetti, M. C. et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the _I_Kr potassium channel. Cell81, 299–307 (1995). ArticleCAS Google Scholar
Mitcheson, J. S. et al. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA97, 12329–12333 (2000). ArticleADSCAS Google Scholar
Liu, X. K. et al. Female gender is a risk factor for torsades de pointes in an in vitro animal model. J. Cardiovasc. Pharmacol.34, 287–294 (1999). ArticleCAS Google Scholar
Roden, D. M. & Spooner, P. M. Inherited long QT syndromes: a paradigm for understanding arrhythmogenesis. J. Cardiovasc. Electrophysiol.10, 1664–1683 (1999). ArticleCAS Google Scholar
Roden, D. M. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc. Res.50, 224–231 (2001). ArticleCAS Google Scholar
Abbott, G. W. et al. MiRP1 forms _I_Kr potassium channels with HERG and is associated with cardiac arrhythmia. Cell97, 175–187 (1999). ArticleCAS Google Scholar
Mazhari, R. et al. Molecular interactions between two long-QT syndrome gene products, HERG and KCNE2, rationalized by in vitro and in silico analysis. Circ. Res.89, 33–38 (2001). ArticleCAS Google Scholar
Priori, S. G. et al. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management parts I and II. Circulation99, 518–528 (1999). ArticleCAS Google Scholar
Benhorin, J. et al. Effects of flecainide in patients with new SCN5A mutation: mutation- specific therapy for long-QT syndrome? Circulation101, 1698–1706 (2000). ArticleCAS Google Scholar
Windle, J. R. et al. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann. Noninvasive Electrocardiol.6, 153–158 (2001). ArticleCAS Google Scholar
Compton, S. J. et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation94, 1018–1022 (1996). ArticleCAS Google Scholar
Shimizu, W. et al. Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation97, 1581–1588 (1998). ArticleCAS Google Scholar
Nuss, H. B. et al. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther.3, 900–912 (1996). MathSciNetCASPubMed Google Scholar
Nuss, H. B., Marban, E. & Johns, D. C. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest.103, 889–896 (1999). ArticleCAS Google Scholar
Donahue, J. K. et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nature Med.6, 1395–1398 (2000). ArticleCAS Google Scholar