Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion (original) (raw)

References

  1. Geppert, M.et al. The role of Rab3A in neurotransmitter release. Nature 369, 493–497 (1994).
    Article ADS CAS Google Scholar
  2. Holz, R. W., Brondyk, W. H., Senter, R. A., Kuizon, L. & Macara, I. G. Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells. J. Biol. Chem. 269, 10229–10234 (1994).
    CAS PubMed Google Scholar
  3. Johannes, L.et al. The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendrocrine cels. EMBO J. 13, 2029–2037 (1994).
    Article CAS Google Scholar
  4. Geppert, M., Goda, Y., Stevens, C. F. & Südhof, T. C. Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997).
    Article ADS CAS Google Scholar
  5. Castillo, P. E., Janz, R., Südhof, T. C., Tzounopoulos, T., Malenka, R. C. & Nicoll, R. A. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590–593 (1997).
    Article ADS CAS Google Scholar
  6. Burstein, E. S., Brondyk, W. H., Macara, I. G., Kaibuchi, K. & Takai, Y. Regulation of the GTPase cycle of the neuronally expressed Ras-like GTP-bindign protein Rab3A. J. Biol. Chem. 268, 22247–22250 (1993).
    CAS PubMed Google Scholar
  7. Fischer von Mollard, G., Stahl, B., Khokhlatchev, A., Südhof, T. C. & Jahn, R. Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. J. Biol. Chem. 269, 10971–10974 (1994).
    CAS PubMed Google Scholar
  8. Südhof, T. C. Function of Rab3A GDP/GTP exchange. Neuron 18, 519–522 (1997).
    Article Google Scholar
  9. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cel functions. Nature 348, 125–132 (1990).
    Article ADS CAS Google Scholar
  10. Nuoffer, C. & Balch, W. E. GTPases: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63, 949–990 (1994).
    Article CAS Google Scholar
  11. Shirataki, H.et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell. Biol. 13, 2061–2068 (1993).
    Article CAS Google Scholar
  12. Li, C.et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13, 885–898 (1994).
    Article CAS Google Scholar
  13. Stahl, B., Chou, J. H., Li, C., Südhof, T. C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 15, 1799–1809 (1996).
    Article CAS Google Scholar
  14. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian ras interacts directly with the serin/threonine kinase raf. Cell 74, 205–214 (1993).
    Article CAS Google Scholar
  15. Südhof, T. C. & Rizo, J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17, 379–388 (1996).
    Article Google Scholar
  16. Weisman, L. S. & Wickner, W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J. Biol. Chem. 267, 618–623 (1992).
    CAS PubMed Google Scholar
  17. Yamamoto, A.et al. Novel PI(4)P 5-kinase homologue, Fablp, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6, 525–539 (1995).
    Article CAS Google Scholar
  18. Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R. & Scheller, R. H. Hrs-2 is an ATPase implicated in Ca2+-regulated secretion. Nature 385, 826–829 (1997).
    Article ADS CAS Google Scholar
  19. Sheng, M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578 (1996).
    Article CAS Google Scholar
  20. Dowling, J. E. The Retina. An Approachable Part of the Brain(Belknap, Cambridge, MA, (1987)).
    Google Scholar
  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual(Cold Spring Harbor Laboratory Press, New York, (1989)).
    Google Scholar
  22. Hata, Y. & Südhof, T. C. Anovel ubiquitous form of munc18 interacts with multiple syntaxins. J. Biol. Chem. 270, 13022–13028 (1991).
    Article Google Scholar
  23. Guan, K. L. & Dixon, J. E. Eukaryotic proteins expressed in Escherischia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).
    Article CAS Google Scholar
  24. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. Aflexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996).
    Article CAS Google Scholar
  25. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. USA 89, 10915–10919 (1992).
    Article ADS CAS Google Scholar
  26. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347–349 (1995).
    Article CAS Google Scholar
  27. Schmitz, F., Bechmann, M. & Drenckhahn, D. Purification of synaptic ribbons, structural components of the photoreceptor active zone complex. J. Neurosci. 15, 7109–7116 (1996).
    Article Google Scholar
  28. McMahon, H.et al. Cellubrevin: a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993).
    Article ADS CAS Google Scholar
  29. Ichtchenko, K.et al. Neuroligin 1: A splice-site specific ligand for β-neurexins. Cell 81, 435–443 (1995).
    Article CAS Google Scholar
  30. Matsui, Y.et al. Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J. Biol. Chem. 263, 11071–11074 (1988).
    CAS PubMed Google Scholar

Download references