Bloembergen, N. (ed.) Non-linear Spectroscopy (Proc. Int. School Phys. “Enrico Fermi”) (North Holland, Amsterdam, 1977). Google Scholar
Hänsch, T. W. & Inguscio, M. (eds) Frontiers in Laser Spectroscopy (Proc. Int. School Phys. “Enrico Fermi”) (North Holland, Amsterdam, 1994). Google Scholar
Diddams, S. A. et al. An optical clock based on a single trapped 199Hg ion. Science293, 825–828 (2001). ArticleADSCAS Google Scholar
Evenson, K. M., Wells, J. S., Petersen, F. R., Danielson, B. L. & Day, G. W. Accurate frequencies of molecular transitions used in laser stabilization: the 3.39-μm transition in CH4 and the 9.33- and 10.18-μm transitions in CO2 . Appl. Phys. Lett.22, 192–195 (1973). ArticleADSCAS Google Scholar
Schnatz, H., Lipphardt, B., Helmcke, J., Riehle, F. & Zinner, G. First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett.76, 18–21 (1996). ArticleADSCAS Google Scholar
Udem, Th. et al. Phase-coherent measurement of the hydrogen 1_S_-2_S_ transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett.79, 2646–2649 (1997). ArticleADSCAS Google Scholar
Schwob, C. et al. Optical frequency measurement of the 2_S_-12_D_ transitions in hydrogen and deuterium: Rydberg constant and Lamb shift determinations. Phys. Rev. Lett.82, 4960–4963 (1999); erratum Phys. Rev. Lett.86, 4193 (2001). ArticleADSCAS Google Scholar
Bernard, J. E. et al. Cs-based frequency measurement of a single trapped ion transition in the visible region of the spectrum. Phys. Rev. Lett.82, 3228–3231 (1999). ArticleADSCAS Google Scholar
Reichert, J., Holzwarth, R., Udem, Th. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun.172, 59–68 (1999). ArticleADSCAS Google Scholar
Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T. W. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett.24, 881–883 (1999). ArticleADSCAS Google Scholar
Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T.W. Absolute optical frequency measurement of the cesium _D_1 line with a mode-locked laser. Phys. Rev. Lett.82, 3568–3571 (1999). ArticleADSCAS Google Scholar
Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science288, 635–639 (2000). ArticleADSCAS Google Scholar
Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett.84, 5102–5105 (2000). ArticleADSCAS Google Scholar
Reichert, J. et al. Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser. Phys. Rev. Lett.84, 3232–3235 (2000). ArticleADSCAS Google Scholar
Niering, M. et al. Measurement of the hydrogen 1_S_-2_S_ transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett.84, 5496–5499 (2000). ArticleADSCAS Google Scholar
Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett.85, 2264–2267 (2000). ArticleADSCAS Google Scholar
Udem, Th. et al. Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett.86, 4996–4999 (2001). ArticleADSCAS Google Scholar
Stenger, J. et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser. Phys Rev. A63, 021802-1–021802-4 (2001). ArticleADS Google Scholar
Pokasov, P. V. et al. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 510–512 (World Scientific, Singapore, 2002). Google Scholar
Nevsky, A. Yu. et al. Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm. Opt. Comm.263, 192–272 (2001). Google Scholar
Holzwarth, R. et al. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. Appl. Phys. B73, 269 (2001). ArticleADSCAS Google Scholar
Ye, J. et al. Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency division femtosecond-comb. Phys. Rev. Lett.85, 3797–3800 (2000). ArticleADSCAS Google Scholar
Lea, S. N. et al. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 144–151 (World Scientific, Singapore, 2002). Google Scholar
Dubé, P., Marmet, L., Bernard, J. E., Siemsen, K. J. & Madej, A. A. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 489–491 (World Scientific, Singapore, 2002). Google Scholar
Stenger, J., Tamm, Ch., Haverkamp, N., Weyers, S. & Telle, H. R. Absolute frequency measurement of the 435.5 nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser. Opt. Lett.26, 1589–1591 (2001). ArticleADSCAS Google Scholar
von Zanthier, J. et al. Absolute frequency measurement of the In+ clock transition with a mode-locked laser. Opt. Lett.25, 1729–1731 (2000). ArticleADSCAS Google Scholar
Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett.85, 740–743 (2000). ArticleADSCAS Google Scholar
Telle, H. R., Steinmeyer, G., Dunlop, A. E., Sutter, D. H. & Keller, U. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B69, 327–332 (1999). ArticleADSCAS Google Scholar
Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett.21, 2008–2010 (1996). ArticleADSCAS Google Scholar
Paulus, G. G. et al. Evidence of 'absolute-phase' phenomena in photoionization with few-cycle laser pulses. Nature414, 182–184 (2001). ArticleADSCAS Google Scholar
Drescher M. et al. X-ray pulses approaching the attosecond frontier. Science291, 1923–1927 (2001). ArticleADS Google Scholar
Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light. Phys. Rev. Lett.40, 847–850 (1978). ArticleADSCAS Google Scholar
Chebotayev, V. P. & Ulybin, V. A. Synchronization of atomic quantum transitions by light pulses. Appl. Phys. 50, 1–5 (1990). Article Google Scholar
Kane, D. M., Bramwell, S. R. & Ferguson, A. I. FM dye lasers. Appl. Phys. B39, 171–178 (1986). ArticleADS Google Scholar
Telle, H. R. in Frequency Control of Semiconductor Lasers (ed. Ohtsu, M.) 137–167 (Wiley, New York, 1996). Google Scholar
Hänsch, T.W. in The Hydrogen Atom (eds Bassani, G. F., Inguscio, M. & Hänsch, T. W.) 93–102 (Springer, Berlin, 1989). Book Google Scholar
Telle, H. R., Meschede, D. & Hänsch, T. W. Realization of a new concept for visible frequency division: phase-locking of harmonic and sum frequencies. Opt. Lett.15, 532–534 (1990). ArticleADSCAS Google Scholar
Wicht, A., Hensley, J. M., Sarajlic, E. & Chu, S. A preliminary measurement of ħ/Mcs with atom interferometry, in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) (World Scientific, Singapore, in the press).
Hensley, J. M. A Precision Measurement of the Fine Strucure Constant. Thesis, Stanford Univ. (2001). Google Scholar
Becker, Th., von Zanthier, J. & Nevsky, A. Yu. High-resolution spectroscopy of a single In+ ion: progress towards an optical frequency standard. Phys. Rev. A63, 051802-1–051802-4 (2001). ArticleADS Google Scholar
Udem, Th., Holzwarth, R. & Hänsch, T. W. in Proceeding of Joint Meeting of the 13th European Frequency and Time Forum and 1999 IEEE International Frequency Control Symposium, Besancon, France, 13-16 April 1999 620–625 (IEEE Publications, 1999) Google Scholar
Knight, J. C., Birks, T. A., Russell, P. St. J. & Atkin, D. M. Endlessly single-mode photonic crystal fibre. Opt. Lett.22, 961–964 (1996). Google Scholar
Wadsworth, W. J. et al. Soliton effects in photonic crystal fibres at 850 nm. Electron. Lett.36, 53 (2000). Article Google Scholar
Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibres with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–28 (2000). ArticleADSCAS Google Scholar
Birks, T. A., Wadsworth, W. J. & Russell, P. St. J. Supercontinuum generation in tapered fibres. Opt. Lett.25, 1415–1417 (2000). ArticleADSCAS Google Scholar
Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Tisapphire laser. Opt. Lett.26, 373–375 (2001). ArticleADSCAS Google Scholar
Diddams, S. A., Hollberg, L., Ma, L. S. & Robertson, L. A femtosecond-laser-based optical clockwork with instability 6.3 × 10−16 in 1 s. Opt. Lett.27, 58 (2002). ArticleADS Google Scholar
Madej, A. A. & Bernard, J. E. in Frequency Measurement and Control (ed. Luiten, A. N.) 153–194 (Springer, Berlin, 2001). Book Google Scholar
Riehle, F. & Helmcke, J. in Frequency Measurement and Control (ed. Luiten, A. N.) 95–129 (Springer, Berlin, 2001). Book Google Scholar
Karshenboim, S. G. Some possibilities for laboratory searches for variations of fundamental constants. Can. J. Phys.78, 639–678 (2000). ArticleADSCAS Google Scholar
Salomon, Ch. et al. in Atomic Physics 17: XVII Int. Conf. Atom. Phys.; ICAP 2000 (eds Arimondo, E., De Natale, P. & Inguscio, M.) 23–40 (AIP Conf. Proc. Vol. 551) (American Institute of Physics, 2001). Google Scholar
Webb, J. K. et al. Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett.87, 091301-1–091301-4 (2001). ArticleADS Google Scholar
Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett.45, 2081–2084 (1980). ArticleADS Google Scholar
Ferguson, A. I., Eckstein, J. N. & Hänsch, T. W. Polarization spectroscopy with ultrashort light pulses. Appl. Phys.18, 257 (1979). ArticleADSCAS Google Scholar
Wineland, D. J., Bergquist, J. C., Itano, W. M, Diedrich, F. & Weimer, C. S. in The Hydrogen Atom (eds Bassani, G. F., Inguscio, M. & Hänsch, T. W.) 123–133 (Springer, Berlin, 1989.) Book Google Scholar