Optical frequency metrology (original) (raw)

References

  1. Bloembergen, N. (ed.) Non-linear Spectroscopy (Proc. Int. School Phys. “Enrico Fermi”) (North Holland, Amsterdam, 1977).
    Google Scholar
  2. Hänsch, T. W. & Inguscio, M. (eds) Frontiers in Laser Spectroscopy (Proc. Int. School Phys. “Enrico Fermi”) (North Holland, Amsterdam, 1994).
    Google Scholar
  3. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg ion. Science 293, 825–828 (2001).
    Article ADS CAS Google Scholar
  4. Evenson, K. M., Wells, J. S., Petersen, F. R., Danielson, B. L. & Day, G. W. Accurate frequencies of molecular transitions used in laser stabilization: the 3.39-μm transition in CH4 and the 9.33- and 10.18-μm transitions in CO2 . Appl. Phys. Lett. 22, 192–195 (1973).
    Article ADS CAS Google Scholar
  5. Schnatz, H., Lipphardt, B., Helmcke, J., Riehle, F. & Zinner, G. First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76, 18–21 (1996).
    Article ADS CAS Google Scholar
  6. Udem, Th. et al. Phase-coherent measurement of the hydrogen 1_S_-2_S_ transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646–2649 (1997).
    Article ADS CAS Google Scholar
  7. Schwob, C. et al. Optical frequency measurement of the 2_S_-12_D_ transitions in hydrogen and deuterium: Rydberg constant and Lamb shift determinations. Phys. Rev. Lett. 82, 4960–4963 (1999); erratum Phys. Rev. Lett. 86, 4193 (2001).
    Article ADS CAS Google Scholar
  8. Bernard, J. E. et al. Cs-based frequency measurement of a single trapped ion transition in the visible region of the spectrum. Phys. Rev. Lett. 82, 3228–3231 (1999).
    Article ADS CAS Google Scholar
  9. Udem, Th. Phasenkohärente optische Frequenzmessungen am Wasserstoffatom. Thesis, Ludwig-Maximilians Univ. (1997).
  10. Reichert, J., Holzwarth, R., Udem, Th. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).
    Article ADS CAS Google Scholar
  11. Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T. W. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 24, 881–883 (1999).
    Article ADS CAS Google Scholar
  12. Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T.W. Absolute optical frequency measurement of the cesium _D_1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).
    Article ADS CAS Google Scholar
  13. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).
    Article ADS CAS Google Scholar
  14. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).
    Article ADS CAS Google Scholar
  15. Reichert, J. et al. Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser. Phys. Rev. Lett. 84, 3232–3235 (2000).
    Article ADS CAS Google Scholar
  16. Niering, M. et al. Measurement of the hydrogen 1_S_-2_S_ transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496–5499 (2000).
    Article ADS CAS Google Scholar
  17. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).
    Article ADS CAS Google Scholar
  18. Udem, Th. et al. Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996–4999 (2001).
    Article ADS CAS Google Scholar
  19. Stenger, J. et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser. Phys Rev. A 63, 021802-1–021802-4 (2001).
    Article ADS Google Scholar
  20. Pokasov, P. V. et al. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 510–512 (World Scientific, Singapore, 2002).
    Google Scholar
  21. Nevsky, A. Yu. et al. Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm. Opt. Comm. 263, 192–272 (2001).
    Google Scholar
  22. Holzwarth, R. et al. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. Appl. Phys. B 73, 269 (2001).
    Article ADS CAS Google Scholar
  23. Ye, J. et al. Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency division femtosecond-comb. Phys. Rev. Lett. 85, 3797–3800 (2000).
    Article ADS CAS Google Scholar
  24. Lea, S. N. et al. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 144–151 (World Scientific, Singapore, 2002).
    Google Scholar
  25. Dubé, P., Marmet, L., Bernard, J. E., Siemsen, K. J. & Madej, A. A. in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) 489–491 (World Scientific, Singapore, 2002).
    Google Scholar
  26. Stenger, J., Tamm, Ch., Haverkamp, N., Weyers, S. & Telle, H. R. Absolute frequency measurement of the 435.5 nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser. Opt. Lett. 26, 1589–1591 (2001).
    Article ADS CAS Google Scholar
  27. von Zanthier, J. et al. Absolute frequency measurement of the In+ clock transition with a mode-locked laser. Opt. Lett. 25, 1729–1731 (2000).
    Article ADS CAS Google Scholar
  28. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).
    Article ADS CAS Google Scholar
  29. Telle, H. R., Steinmeyer, G., Dunlop, A. E., Sutter, D. H. & Keller, U. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).
    Article ADS CAS Google Scholar
  30. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).
    Article ADS CAS Google Scholar
  31. Paulus, G. G. et al. Evidence of 'absolute-phase' phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).
    Article ADS CAS Google Scholar
  32. Drescher M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).
    Article ADS Google Scholar
  33. Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light. Phys. Rev. Lett. 40, 847–850 (1978).
    Article ADS CAS Google Scholar
  34. Chebotayev, V. P. & Ulybin, V. A. Synchronization of atomic quantum transitions by light pulses. Appl. Phys. 50, 1–5 (1990).
    Article Google Scholar
  35. Kane, D. M., Bramwell, S. R. & Ferguson, A. I. FM dye lasers. Appl. Phys. B 39, 171–178 (1986).
    Article ADS Google Scholar
  36. Telle, H. R. in Frequency Control of Semiconductor Lasers (ed. Ohtsu, M.) 137–167 (Wiley, New York, 1996).
    Google Scholar
  37. Hänsch, T.W. in The Hydrogen Atom (eds Bassani, G. F., Inguscio, M. & Hänsch, T. W.) 93–102 (Springer, Berlin, 1989).
    Book Google Scholar
  38. Telle, H. R., Meschede, D. & Hänsch, T. W. Realization of a new concept for visible frequency division: phase-locking of harmonic and sum frequencies. Opt. Lett. 15, 532–534 (1990).
    Article ADS CAS Google Scholar
  39. Wicht, A., Hensley, J. M., Sarajlic, E. & Chu, S. A preliminary measurement of ħ/Mcs with atom interferometry, in Proc. Sixth Symp. Freq. Standards Metrol. (ed. Gill, P.) (World Scientific, Singapore, in the press).
  40. Hensley, J. M. A Precision Measurement of the Fine Strucure Constant. Thesis, Stanford Univ. (2001).
    Google Scholar
  41. Becker, Th., von Zanthier, J. & Nevsky, A. Yu. High-resolution spectroscopy of a single In+ ion: progress towards an optical frequency standard. Phys. Rev. A 63, 051802-1–051802-4 (2001).
    Article ADS Google Scholar
  42. Udem, Th., Holzwarth, R. & Hänsch, T. W. in Proceeding of Joint Meeting of the 13th European Frequency and Time Forum and 1999 IEEE International Frequency Control Symposium, Besancon, France, 13-16 April 1999 620–625 (IEEE Publications, 1999)
    Google Scholar
  43. Knight, J. C., Birks, T. A., Russell, P. St. J. & Atkin, D. M. Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961–964 (1996).
    Google Scholar
  44. Wadsworth, W. J. et al. Soliton effects in photonic crystal fibres at 850 nm. Electron. Lett. 36, 53 (2000).
    Article Google Scholar
  45. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibres with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–28 (2000).
    Article ADS CAS Google Scholar
  46. Birks, T. A., Wadsworth, W. J. & Russell, P. St. J. Supercontinuum generation in tapered fibres. Opt. Lett. 25, 1415–1417 (2000).
    Article ADS CAS Google Scholar
  47. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Tisapphire laser. Opt. Lett. 26, 373–375 (2001).
    Article ADS CAS Google Scholar
  48. Diddams, S. A., Hollberg, L., Ma, L. S. & Robertson, L. A femtosecond-laser-based optical clockwork with instability 6.3 × 10−16 in 1 s. Opt. Lett. 27, 58 (2002).
    Article ADS Google Scholar
  49. Madej, A. A. & Bernard, J. E. in Frequency Measurement and Control (ed. Luiten, A. N.) 153–194 (Springer, Berlin, 2001).
    Book Google Scholar
  50. Riehle, F. & Helmcke, J. in Frequency Measurement and Control (ed. Luiten, A. N.) 95–129 (Springer, Berlin, 2001).
    Book Google Scholar
  51. Dirac, P. A. M. The cosmological constants. Nature 139, 323 (1937).
    Article ADS Google Scholar
  52. Karshenboim, S. G. Some possibilities for laboratory searches for variations of fundamental constants. Can. J. Phys. 78, 639–678 (2000).
    Article ADS CAS Google Scholar
  53. Salomon, Ch. et al. in Atomic Physics 17: XVII Int. Conf. Atom. Phys.; ICAP 2000 (eds Arimondo, E., De Natale, P. & Inguscio, M.) 23–40 (AIP Conf. Proc. Vol. 551) (American Institute of Physics, 2001).
    Google Scholar
  54. Webb, J. K. et al. Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301-1–091301-4 (2001).
    Article ADS Google Scholar
  55. Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980).
    Article ADS Google Scholar
  56. Ferguson, A. I., Eckstein, J. N. & Hänsch, T. W. Polarization spectroscopy with ultrashort light pulses. Appl. Phys. 18, 257 (1979).
    Article ADS CAS Google Scholar
  57. Wineland, D. J., Bergquist, J. C., Itano, W. M, Diedrich, F. & Weimer, C. S. in The Hydrogen Atom (eds Bassani, G. F., Inguscio, M. & Hänsch, T. W.) 123–133 (Springer, Berlin, 1989.)
    Book Google Scholar

Download references