Killing activity of neutrophils is mediated through activation of proteases by K+ flux (original) (raw)

References

  1. Metchnikoff, B. Immunity in Infective Diseases (Cambridge Univ. Press, 1905).
    Google Scholar
  2. Sbarra, A. J. & Karnovsky, M. L. The biochemical basis of phagocytosis. 1. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234, 1355–1362 (1959).
    CAS PubMed Google Scholar
  3. Mandell, G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun. 9, 337–341 (1974).
    CAS PubMed PubMed Central Google Scholar
  4. Babior, B. M., Curnutte, J. T. & Kipnes, R. S. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J. Lab. Clin. Med. 85, 235–244 (1975).
    CAS PubMed Google Scholar
  5. Babior, B. M., Kipnes, R. S. & Curnutte, J. T. Biological defence mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52, 741–744 (1973).
    Article CAS Google Scholar
  6. Thrasher, A. J., Keep, N. H., Wientjes, F. & Segal, A. W. Chronic granulomatous disease. Biochim. Biophys. Acta 1227, 1–24 (1994).
    Article CAS Google Scholar
  7. Klebanoff, S. J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin. Hematol. 12, 117–142 (1975).
    CAS PubMed Google Scholar
  8. Belaaouaj, A. et al. Mice lacking neutrophil elastase reveal impaired host defense against Gram-negative bacterial sepsis. Nature Med. 4, 615–618 (1998).
    Article CAS Google Scholar
  9. Tkalcevic, J. et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 12, 201–210 (2000).
    Article CAS Google Scholar
  10. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils. Infect. Immun. 64, 3512–3517 (1996).
    CAS PubMed PubMed Central Google Scholar
  11. Aratani, Y., Koyama, H., Nyui, S., Suzuki, K., Kura, F. & Maeda, N. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. 67, 1828–1836 (1999).
    CAS PubMed PubMed Central Google Scholar
  12. Cross, A. R. & Jones, O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237, 111–116 (1986).
    Article CAS Google Scholar
  13. Segal, A. W., Geisow, M., Garcia, R., Harper, A. & Miller, R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290, 406–409 (1981).
    Article ADS CAS Google Scholar
  14. Segal, A. W. & Coade, S. B. Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem. Biophys. Res. Commun. 84, 611–617 (1978).
    Article CAS Google Scholar
  15. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017 (1998).
    CAS PubMed Google Scholar
  16. Bu-Ghanim, H. N., Segal, A. W., Keep, N. H. & Casimir, C. M. Molecular analysis in three cases of X91-variant chronic granulomatous disease. Blood 86, 3575–3582 (1995).
    CAS PubMed Google Scholar
  17. Jiang, Q., Griffin, D. A., Barofsky, D. F. & Hurst, J. K. Intraphagosomal chlorination dynamics and yields determined using unique fluorescent bacterial mimics. Chem. Res. Toxicol. 10, 1080–1089 (1997).
    Article CAS Google Scholar
  18. Styrt, B. & Klempner, M. S. Internal pH of human neutrophil lysosomes. FEBS Lett. 149, 113–116 (1982).
    Article CAS Google Scholar
  19. Henderson, L. M., Chappell, J. B. & Jones, O. T. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 246, 325–329 (1987).
    Article CAS Google Scholar
  20. Nanda, A. & Grinstein, S. Protein kinase C activates an H+ (equivalent) conductance in the plasma membrane of human neutrophils. Proc. Natl Acad. Sci. USA 88, 10816–10820 (1991).
    Article ADS CAS Google Scholar
  21. DeCoursey, T. E., Cherny, V. V., Zhou, W. & Thomas, L. L. Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc. Natl Acad. Sci. USA 97, 6885–6889 (2000).
    Article ADS CAS Google Scholar
  22. Menegazzi, R., Busetto, S., Dri, P., Cramer, R. & Patriarca, P. Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-α (TNF) on biologic surfaces. J. Cell Biol. 135, 511–522 (1996).
    Article CAS Google Scholar
  23. Clapp, L. H. & Tinker, A. Potassium channels in the vasculature. Curr. Opin. Nephrol. Hypertens. 7, 91–98 (1998).
    CAS PubMed Google Scholar
  24. Love, W. D. & Burch, G. E. A comparison of potassium42, rubidium86, and cesium134 as traces of potassium in the study of cation metabolism of human erythrocytes in vitro. J. Lab. Clin. Med. 41, 351–362 (1953).
    CAS PubMed Google Scholar
  25. Segal, A. W. & Meshulam, T. Production of superoxide by neutrophils: a reappraisal. FEBS Lett. 100, 27–32 (1979).
    Article CAS Google Scholar
  26. Ince, C. et al. Intracellular K+, Na+ and Cl- concentrations and membrane potential in human monocytes. Biochim. Biophys. Acta 905, 195–204 (1987).
    Article CAS Google Scholar
  27. Potma, E., de Boeij, W. P., van Haastert, P. J. & Wiersma, D. A. Real-time visualization hydrodynamics in single living cells. Proc. Natl Acad. Sci. USA 98, 1577–1582 (2001).
    Article ADS CAS Google Scholar
  28. Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).
    Article CAS Google Scholar
  29. Rizoli, S. B., Rotstein, O. D., Parodo, J., Phillips, M. J. & Kapus, A. Hypertonic inhibition of exocytosis in neutrophils: central role for osmotic actin skeleton remodeling. Am. J. Physiol. Cell Physiol. 279, C619–C633 (2000).
    Article CAS Google Scholar
  30. Kolset, S. O. & Gallagher, J. T. Proteoglycans in haemopoietic cells. Biochim. Biophys. Acta 1032, 191–211 (1990).
    CAS PubMed Google Scholar
  31. Odeberg, H. & Olsson, I. Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest. 56, 1118–1124 (1975).
    Article CAS Google Scholar
  32. Winterbourn, C. C., Garcia, R. C. & Segal, A. W. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride. Biochem. J. 228, 583–592 (1985).
    Article CAS Google Scholar
  33. Kettle, A. J. & Winterbourn, C. C. A kinetic analysis of the catalase activity of myeloperoxidase. Biochemistry 40, 10204–10212 (2001).
    Article CAS Google Scholar
  34. Guerin, I. & de Chastellier, C. Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect. Immun. 68, 2655–2662 (2000).
    Article CAS Google Scholar
  35. Henderson, L. M. & Meech, R. W. Evidence that the product of the human X-linked CGD gene, gp91-phox, is a voltage-gated H+ pathway. J. Gen. Physiol. 114, 771–786 (1999).
    Article CAS Google Scholar
  36. Maturana, A. et al. Heme histidine ligands within gp91phox modulate proton conduction by the phagocyte NADPH oxidase. J. Biol. Chem. 276, 30277–30284 (2001).
    Article CAS Google Scholar
  37. Nanda, A., Romanek, R., Curnutte, J. T. & Grinstein, S. Assessment of the contribution of the cytochrome b moiety of the NADPH oxidase to the transmembrane H+ conductance of leukocytes. J. Biol. Chem. 269, 27280–27285 (1994).
    CAS PubMed Google Scholar
  38. De Coursey, T. E., Cherny, V. V., Morgan, D., Katz, B. Z. & Dinauer, M. C. The gp91phox component of NADPH oxidase is not the voltage-gated proton channel in phagocytes, but it helps. J. Biol. Chem. 276, 36063–36066 (2001).
    Article CAS Google Scholar
  39. McCord, J. M. & Wong, K. in Oxygen Free Radicals and Tissue Damage (ed. Fitzsimons, D. W.) 343–360 (Excerpta Medica, Amsterdam, 1979).
    Google Scholar
  40. Klebanoff, S. J. & Pincus, S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J. Clin. Invest. 50, 2226–2229 (1971).
    Article CAS Google Scholar
  41. Brennan, M. L. et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest. 107, 419–430 (2001).
    Article CAS Google Scholar
  42. Klebanoff, S. J. & Clark, R. A. Iodination by human polymorphonuclear leukocytes: a re-evaluation. J. Lab. Clin. Med. 89, 675–686 (1977).
    CAS PubMed Google Scholar
  43. Grogan, A. et al. Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J. Cell Sci. 110, 3071–3081 (1997).
    CAS PubMed Google Scholar
  44. Hall, T. A. & Gupta, B. L. in Principles of Analytical Electron Microscopy (eds Joy, D. C., Romig, A. D. & Goldstein, J. I.) 219–248 (Plenum, London, 1986).
    Book Google Scholar
  45. Olsen, R. L. & Little, C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem. J. 209, 781–787 (1983).
    Article CAS Google Scholar
  46. Sadir, R., Baleux, F., Grosdidier, A., Imberty, A. & Lortat-Jacob, H. Characterization of the stromal cell-derived factor-1–α-heparin complex. J. Biol. Chem. 276, 8288–8296 (2001).
    Article CAS Google Scholar
  47. Vita, F. et al. Preparation of membrane fractions from human neutrophil granules: A simple method. Methods Cell Sci. 19, 197–205 (1997).
    Article Google Scholar
  48. Barrett, A. J. Cathepsin G. Methods Enzymol. 80C, 561–565 (1981).
    Article Google Scholar
  49. Amos, B. J., Pocock, G. & Richards, C. D. On the role of bicarbonate as a hydrogen ion buffer in rat CNS neurones. Exp. Physiol. 81, 623–632 (1996).
    Article CAS Google Scholar

Download references