Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult (original) (raw)

References

  1. Feighner, J. P. & Boyer, W. F. Serotonin-1A anxiolytics: an overview. Psychopathology 22 (Suppl. 1), 21–26 (1989).
    Article Google Scholar
  2. Menard, J. & Treit, D. Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci. Biobehav. Rev. 23, 591–613 (1999).
    Article CAS Google Scholar
  3. Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T. & Toth, M. Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl Acad. Sci. USA 95, 10734–10739 (1998).
    Article CAS ADS Google Scholar
  4. Ramboz, S. et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl Acad. Sci. USA 95, 14476–14481 (1998).
    Article CAS ADS Google Scholar
  5. Heisler, L. K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl Acad. Sci. USA 95, 15049–15054 (1998).
    Article CAS ADS Google Scholar
  6. Sibille, E., Pavlides, C., Benke, D. & Toth, M. Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 20, 2758–2765 (2000).
    Article CAS Google Scholar
  7. Gross, C., Santarelli, L., Brunner, D., Zhuang, X. & Hen, R. Altered fear circuits in 5-HT1A receptor KO mice. Biol. Psychiatry 48, 1157–1163 (2000).
    Article CAS Google Scholar
  8. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).
    Article CAS Google Scholar
  9. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).
    Article CAS ADS Google Scholar
  10. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 (1996).
    Article CAS ADS Google Scholar
  11. Martin, K. F., Phillips, I., Hearson, M., Prow, M. R. & Heal, D. J. Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br. J. Pharmacol. 107, 15–21 (1992).
    Article CAS Google Scholar
  12. Fletcher, A. et al. Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav. Brain Res. 73, 337–353 (1996).
    Article CAS Google Scholar
  13. Cao, B. J. & Rodgers, R. J. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. II. WAY 100635, SDZ 216-525 and NAN-190. Pharmacol. Biochem. Behav. 58, 593–603 (1997).
    Article CAS Google Scholar
  14. Bayer, K. U., Lohler, J., Schulman, H. & Harbers, K. Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res. Mol. Brain Res. 70, 147–154 (1999).
    Article CAS Google Scholar
  15. Tweed, J. L., Schoenbach, V. J., George, L. K. & Blazer, D. G. The effects of childhood parental death and divorce on six-month history of anxiety disorders. Br. J. Psychiatry 154, 823–828 (1989).
    Article CAS Google Scholar
  16. Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch. Gen. Psychiatry 49, 109–116 (1992).
    Article CAS Google Scholar
  17. Coplan, J. D., Rosenblum, L. A. & Gorman, J. M. Primate models of anxiety. Longitudinal perspectives. Psychiatric Clin. North. Am. 18, 727–743 (1995).
    Article CAS Google Scholar
  18. Caldji, C. et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl Acad. Sci. USA 95, 5335–5340 (1998).
    Article CAS ADS Google Scholar
  19. Mitchell, J. B., Iny, L. J. & Meaney, M. J. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Brain Res. Dev. Brain Res. 55, 231–235 (1990).
    Article CAS Google Scholar
  20. Lidov, H. G. & Molliver, M. E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).
    Article CAS Google Scholar
  21. Hohmann, C. F., Hamon, R., Batshaw, M. L. & Coyle, J. T. Transient postnatal elevation of serotonin levels in mouse neocortex. Brain Res. 471, 163–166 (1988).
    Article CAS Google Scholar
  22. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).
    Article CAS Google Scholar
  23. Upton, A. L. et al. Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J. Neurosci. 19, 7007–7024 (1999).
    Article CAS Google Scholar
  24. Yan, W., Wilson, C. C. & Haring, J. H. Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Res. Dev. Brain Res. 98, 177–184 (1997).
    Article CAS Google Scholar
  25. Haring, J. H. & Yan, W. Dentate granule cell function after neonatal treatment with parachloroamphetamine or 5,7-dihydroxytryptamine. Brain Res. Dev. Brain Res. 114, 269–272 (1999).
    Article CAS Google Scholar
  26. Durig, J. & Hornung, J. P. Neonatal serotonin depletion affects developing and mature mouse cortical neurons. Neuroreport 11, 833–837 (2000).
    Article CAS Google Scholar
  27. Yan, W., Wilson, C. C. & Haring, J. H. 5-HT1a receptors mediate the neurotrophic effect of serotonin on developing dentate granule cells. Brain Res. Dev. Brain Res. 98, 185–190 (1997).
    Article CAS Google Scholar
  28. Kung, M. P., Frederick, D., Mu, M., Zhuang, Z. P. & Kung, H. F. 4-(2′-methoxy-phenyl)-1-[2′-(n-2″-pyridinyl)-p-idobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 272, 429–437 (1995).
    CAS PubMed Google Scholar

Download references