Emerging clinical applications of RNA (original) (raw)
Green, P. J., Pines, O. & Inouye, M. The role of antisense RNA in gene regulation. Annu. Rev. Biochem.55, 569–597 (1986). ArticleCASPubMed Google Scholar
Pestka, S., Daugherty, B. L., Jung, V., Hotta, K. & Pestka, R. K. Anti-mRNA: specific inhibition of translation of single mRNA molecules. Proc. Natl Acad. Sci. USA81, 7525–7528 (1984). ArticleADSCASPubMedPubMed Central Google Scholar
Coleman, J., Green, P. J. & Inouye, M. The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell37, 429–436 (1984). ArticleCASPubMed Google Scholar
Izant, J. G. & Weintraub, H. Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science229, 345–352 (1985). ArticleADSCASPubMed Google Scholar
van der Krol, A. R., Mol, J. N. & Stuitje, A. R. Modulation of eukaryotic gene expression by complementary RNA or DNA sequences. Biotechniques6, 958–976 (1988). CASPubMed Google Scholar
Sullenger, B. A., Lee, T. C., Smith, C. A., Ungers, G. E. & Gilboa, E. Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol. Cell. Biol.10, 6512–6523 (1990). CASPubMedPubMed Central Google Scholar
Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell31, 147–157 (1982). ArticleCASPubMed Google Scholar
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell35, 849–857 (1983). ArticleCASPubMed Google Scholar
Haseloff, J. & Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature334, 585–591 (1988). ArticleADSCASPubMed Google Scholar
Cech, T. R. Ribozymes and their medical implications. J. Am. Med. Assoc.260, 3030–3034 (1988). ArticleCAS Google Scholar
Usman, N. & Blatt, L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest.106, 1197–1202 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bauer, G. et al. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood89, 2259–2267 (1997). ArticleCASPubMed Google Scholar
Wong-Staal, F., Poeschla, E. M. & Looney, D. J. A controlled, Phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum. Gene Ther.9, 2407–2425 (1998). ArticleCASPubMed Google Scholar
Amado, R. G. et al. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum. Gene Ther.10, 2255–2270 (1999). ArticleCASPubMed Google Scholar
Sullenger, B. A. & Cech, T. R. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science262, 1566–1569 (1993). ArticleADSCASPubMed Google Scholar
Lee, N. S., Bertrand, E. & Rossi, J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA5, 1200–1209 (1999). ArticleCASPubMedPubMed Central Google Scholar
Beigelman, L. et al. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem.270, 25702–25708 (1995). ArticleCASPubMed Google Scholar
Pavco, P. A. et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res.6, 2094–2103 (2000). CASPubMed Google Scholar
Macejak, D. G. et al. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology31, 769–776 (2000). ArticleCASPubMed Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleADSCASPubMed Google Scholar
Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA99, 5515–5520 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Miyagishi, M. & Taira, K. U6 promoter-driven siRNA with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol.20, 497–500 (2002). ArticleCAS Google Scholar
Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol.20, 500–505 (2002). ArticleCAS Google Scholar
Paul, C. P. et al. Effective expression of small interfering RNA in human cells. Nature Biotechnol.20, 505–508 (2002). ArticleCAS Google Scholar
Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science289, 452–457 (2000). ArticleADSCASPubMed Google Scholar
Sullenger, B. A. & Cech, T. R. Ribozyme-mediated repair of defective mRNA by targeted, _trans_-splicing. Nature371, 619–622 (1994). ArticleADSCASPubMed Google Scholar
Jones, J. T., Lee, S. W. & Sullenger, B. A. Tagging ribozyme reaction sites to follow _trans_-splicing in mammalian cells. Nature Med.2, 643–648 (1996). ArticleCASPubMed Google Scholar
Phylactou, L. A., Darrah, C. & Wood, M. J. Ribozyme-mediated _trans_-splicing of a trinucleotide repeat. Nature Genet.18, 378–381 (1998). ArticleCASPubMed Google Scholar
Watanabe, T. & Sullenger, B. A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl Acad. Sci. USA97, 8490–8494 (2000). ArticleADSCASPubMedPubMed Central Google Scholar
Lan, N., Howrey, R. P., Lee, S. W., Smith, C. A. & Sullenger, B. A. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science280, 1593–1596 (1998). ArticleADSCASPubMed Google Scholar
Puttaraju, M., Jamison, S. F., Mansfield, S. G., Garcia-Blanco, M. A. & Mitchell, L. G. Spliceosome-mediated RNA _trans_-splicing as a tool for gene therapy. Nature Biotechnol.17, 246–252 (1999). ArticleCAS Google Scholar
Puttaraju, M., DiPasquale, J., Baker, C. C., Mitchell, L. G. & Garcia-Blanco, M. A. Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol. Ther.4, 105–114 (2001). ArticleCASPubMed Google Scholar
Liu, X. et al. Partial correction of endogenous ΔF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA _trans_-splicing. Nature Biotechnol.20, 47–52 (2002). ArticleCAS Google Scholar
Kikumori, T., Cote, G. J. & Gagel, R. F. Promiscuity of pre-mRNA spliceosome-mediated trans splicing: a problem for gene therapy? Hum. Gene Ther.12, 1429–1441 (2001). ArticleCASPubMed Google Scholar
Kohler, U., Ayre, B. G., Goodman, H. M. & Haseloff, J. Trans-splicing ribozymes for targeted gene delivery. J. Mol. Biol.285, 1935–1950 (1999). ArticleCASPubMed Google Scholar
Ayre, B. G., Kohler, U., Goodman, H. M. & Haseloff, J. Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc. Natl Acad. Sci. USA96, 3507–3512 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Zarrinkar, P. P. & Sullenger, B. A. Optimizing the substrate specificity of a group I intron ribozyme. Biochemistry38, 3426–3432 (1999). ArticleCASPubMed Google Scholar
Sullenger, B. A., Gallardo, H. F., Ungers, G. E. & Gilboa, E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell63, 601–608 (1990). ArticleCASPubMed Google Scholar
Lee, T. C., Sullenger, B. A., Gallardo, H. F., Ungers, G. E. & Gilboa, E. Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol.4, 66–74 (1992). CASPubMed Google Scholar
Kohn, D. B. et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood94, 368–371 (1999). ArticleCASPubMed Google Scholar
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science249, 505–510 (1990). ArticleADSCASPubMed Google Scholar
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature346, 818–822 (1990). ArticleADSCASPubMed Google Scholar
Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem.64, 763–797 (1995). ArticleCASPubMed Google Scholar
Jellinek, D. et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry34, 11363–11372 (1995). ArticleCASPubMed Google Scholar
Ruckman, J. et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem.273, 20556–20567 (1998). ArticleCASPubMed Google Scholar
Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature355, 564–566 (1992). ArticleADSCASPubMed Google Scholar
Griffin, L. C., Tidmarsh, G. F., Bock, L. C., Toole, J. J. & Leung, L. L. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood81, 3271–3276 (1993). ArticleCASPubMed Google Scholar
DeAnda, A. Jr et al. Pilot study of the efficacy of a thrombin inhibitor for use during cardiopulmonary bypass. Ann. Thoracic Surg.58, 344–350 (1994). Article Google Scholar
Ostendorf, T. et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol.12, 909–918 (2001). ArticleCASPubMed Google Scholar
Drolet, D. W. et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm. Res.17, 1503–1510 (2000). ArticleCASPubMed Google Scholar
Yewdell, J. W., Norbury, C. C. & Bennink, J. R. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol.73, 1–77 (1999). ArticleCASPubMed Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleADSCASPubMed Google Scholar
Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med.184, 465–472 (1996). ArticleCASPubMed Google Scholar
Koido, S. et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J. Immunol.165, 5713–5719 (2000). ArticleCASPubMed Google Scholar
Granstein, R. D., Ding, W. & Ozawa, H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J. Invest. Dermatol.114, 632–636 (2000). ArticleCASPubMed Google Scholar
Zhang, W. et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum. Gene Ther.10, 1151–1161 (1999). ArticleADSCASPubMed Google Scholar
Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K., & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res.60, 1028–1034 (2000). CASPubMed Google Scholar
Ashley, D. M. et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med.186, 1177–1182 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nair, S. K. et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med.6, 1011–1017 (2000) ArticleCASPubMed Google Scholar
Weissman, D. et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol.165, 4710–4717 (2000). ArticleCASPubMed Google Scholar
Van Tendeloo, V. et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood98, 49–56 (2001). ArticleCASPubMed Google Scholar
Su, Z., Peluso, M. V., Raffegerst, S. H., Schendel, D. J. & Roskrow, M. A. The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. Eur. J. Immunol.31, 947–958 (2001). ArticleCASPubMed Google Scholar
Strobel, I. et al. Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther.7, 2028–2035 (2000). ArticleCASPubMed Google Scholar
Saeboe-Larssen, S., Fossberg, E. & Gaudernack, G. mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J. Immunol. Meth.259, 191–203 (2002). ArticleCAS Google Scholar
Heiser, A. et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res.61, 3388–3393 (2001). CASPubMed Google Scholar
Heiser, A. et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol.166, 2953–2960 (2001). ArticleCASPubMed Google Scholar
Heiser, A. et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol.164, 5508–5514 (2000). ArticleCASPubMed Google Scholar
Thornburg, C., Boczkowski, D., Gilboa, E. & Nair, S. K. Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J. Immunother.23, 412–418 (2000). ArticleCASPubMed Google Scholar
Nair, S. K. et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnol.16, 364–369 (1998). ArticleCAS Google Scholar
Srivastava, P. K. Do human cancers express shared protective antigens? Or the necessity of remembrance of things past. Semin. Immunol.8, 295–302 (1996). ArticleCASPubMed Google Scholar
Heiser, A. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest.109, 409–417 (2002). ArticleCASPubMedPubMed Central Google Scholar