Molecular evidence for an ancient duplication of the entire yeast genome (original) (raw)

References

  1. Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, London, 1970).
    Book Google Scholar
  2. Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B 256, 119–124 (1994).
    Article ADS CAS Google Scholar
  3. Kaback, D. B. Yeast genome structure.In The Yeasts Vol. 6(eds Wheals, A. E., Rose, A. H. & Harrison, J. S.) 179–222 (Academic, London, 1995).
    Google Scholar
  4. Olson, M. V. in The Molecular and Cellular Biology of the Yeast Saccharomyces Vol. 1(eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 1–40 (Cold Spring Harbor Laboratory Press, NY, 1991).
    Google Scholar
  5. Smith, M. M. Molecular evolution of the Saccharomyces cerevisiae histone gene loci. J. Mol. Evol. 24, 252–259 (1987).
    Article ADS CAS Google Scholar
  6. Lalo, D., Stettler, S., Mariotte, S., Slonimski, P. P. & Thuriaux, P. Une duplication fossile entre les régions centromériques de deux chromosomes chez la levure. C.R. Acad. Sci. 316, 367–373 (1993).
    CAS Google Scholar
  7. Melnick, L. & Sherman, F. The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J. Mol. Biol. 233, 372–388 (1993).
    Article CAS Google Scholar
  8. Goffeau, A.et al. Life with 6000 genes. Science 274, 546–567 (1996).
    Article ADS CAS Google Scholar
  9. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  10. Ahn, S. & Tanksley, S. D. Comparative linkage maps of the rice and maize genomes. Proc. Natl Acad. Sci. USA 90, 7980–7984 (1993).
    Article ADS CAS Google Scholar
  11. Spring, J. Vertebrate evolution by interspecific hybridisation–are we polyploid? FEBS Lett. 400, 2–8 (1997).
    Article CAS Google Scholar
  12. Roman, H. & Sands, S. M. Heterogeneity of clones of Saccharomyces derived from haploid ascospores. Proc. Natl Acad. Sci. USA 39, 171–179 (1953).
    Article ADS CAS Google Scholar
  13. Kielland-Brandt, M. C., Nilsson-Tillgren, T., Gjermansen, C., Holmberg, S. & Pedersen, M. B. Genetics of brewing yeasts.In The Yeasts Vol. 6(eds Wheals, A. E., Rose, A. H. & Harrison, J. S.) 223–254 (Academic, London, 1995).
    Google Scholar
  14. Ryu, S.-L., Murooka, Y. & Kaneko, Y. Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast 12, 757–764 (1996).
    Article CAS Google Scholar
  15. Hendriks, L.et al. Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small subunit ribosomal subunit RNA sequences. Syst. Appl. Microbiol. 15, 98–104 (1992).
    Article CAS Google Scholar
  16. Heus, J. J., Zonneveld, B. J. M., Steensma, H. Y. & van den Berg, J. A. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet. 236, 355–362 (1993).
    CAS PubMed Google Scholar
  17. Stark, M. J. R. & Milner, J. S. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast 5, 35–50 (1989).
    Article CAS Google Scholar
  18. Larson, G. P., Castanotto, D., Rossi, J. J. & Malafa, M. P. Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 150, 35–41 (1994).
    Article CAS Google Scholar
  19. Bergkamp-Steffens, G. K., Hoekstra, R. & Planta, R. J. Structural and putative regulatory sequences of Kluyveromyces ribosomal protein genes. Yeast 8, 903–922 (1992).
    Article CAS Google Scholar
  20. Hurwitz, N., Segal, M., Marbach, I. & Levitzki, A. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus. Proc. Natl Acad. Sci. USA 92, 11009–11013 (1995).
    Article ADS CAS Google Scholar
  21. Dohrmann, P. R.et al. Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase. Genes Dev. 6, 93–104 (1992).
    Article CAS Google Scholar
  22. Schmidt, A., Kunz, J. & Hall, M. N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl Acad. Sci. USA 93, 13780–13785 (1996).
    Article ADS CAS Google Scholar
  23. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M. & Nasmyth, K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687–697 (1996).
    Article CAS Google Scholar
  24. Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds) The Origins of Angiosperms and their Biological Consequences (Cambridge Univ. Press, 1987).
    Google Scholar
  25. Fitch, W. M. & Margoliash, E. Construction of phylogenetic trees. Science 155, 279–284 (1967).
    Article ADS CAS Google Scholar

Download references