Casein kinase I transduces Wnt signals (original) (raw)

References

  1. Cadigan,K. & Nusse,R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).
    Article CAS Google Scholar
  2. Moon,R., Brown,J. & Torres,M. WNT's modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).
    Article CAS Google Scholar
  3. Nusse,R. & Varmus,H. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).
    Article CAS Google Scholar
  4. Rubinfeld,B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).
    Article CAS Google Scholar
  5. Heasman,J. et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994).
    Article CAS Google Scholar
  6. Smith,W. & Harland,R. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765 (1991).
    Article CAS Google Scholar
  7. He,X., Saint-Jeannet,J., Woodgett,J., Varmus,H. & Dawid,I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).
    Article ADS CAS Google Scholar
  8. Pierce,S. & Kimelman,D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755–765 (1995).
    CAS PubMed Google Scholar
  9. Molenaar,M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).
    Article CAS Google Scholar
  10. Behrens,J. et al. Functional interactions of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).
    Article ADS CAS Google Scholar
  11. Thorpe,C., Schlesinger,A., Carter,J. & Bowerman,B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).
    Article CAS Google Scholar
  12. Rocheleau,C. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).
    Article CAS Google Scholar
  13. Bhanot,P. et al. A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382, 225–230 (1996).
    Article ADS CAS Google Scholar
  14. Xu,Q., D'Amore,P. & Sokol,S. Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development 125, 4767–4776 (1998).
    CAS PubMed Google Scholar
  15. Yost,C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).
    Article CAS Google Scholar
  16. McKendry,R., Hsu,S., Harland,R. & Grosschedl,R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420–431 (1997).
    Article CAS Google Scholar
  17. Brannon,M., Gomperts,M., Sumoy,L., Moon,R. & Kimelman,D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).
    Article CAS Google Scholar
  18. Carnac,G., Kodjabachian,L., Gurdon,J. & Lemaire,P. The homeobox gene Siamois is a target of the Wnt dorsalization pathway and triggers organiser activity in the absence of mesoderm. Development 122, 3055–3065 (1996).
    CAS PubMed Google Scholar
  19. Tuazon,P. & Traugh,J. in Advances in Second Messenger and Phosphoprotein Research Vol. 23, 123–164 (Raven, New York, 1991).
    Google Scholar
  20. Fish,K., Cegielska,A., Getman,M., Landes,G. & Virshup,D. Isolation and characterization of human casein kinase I epsilon (CKI),, a novel member of the CKI gene family. J. Biol. Chem. 270, 14875–14833 (1995).
    Article CAS Google Scholar
  21. Songyang,Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases (I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16, 6486–6493 (1996).
    Article CAS Google Scholar
  22. Hoekstra,M. et al. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 253, 1031–1034 (1991).
    Article ADS CAS Google Scholar
  23. Kloss,B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94, 97–107 (1998).
    Article CAS Google Scholar
  24. Zhu,J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 (1998).
    Article CAS Google Scholar
  25. McMahon,A. & Moon,R. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989).
    Article CAS Google Scholar
  26. Thomsen,G. et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493 (1990).
    Article CAS Google Scholar
  27. Sasai,Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).
    Article CAS Google Scholar
  28. DeMaggio,A., Lindberg,R., Hunter,T. & Hoekstra,M. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc. Natl Acad. Sci. 89, 7008–7012 (1992).
    Article ADS CAS Google Scholar
  29. Scharf,S. & Gerhart,J. Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation. Dev. Biol. 99, 75–87 (1983).
    Article CAS Google Scholar
  30. Newport,J. & Kirschner,M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–696 (1982).
    Article CAS Google Scholar
  31. LeSueur,J. & Graff,J. Spemann organizer activity of Smad10. Development 126, 137–146 (1999).
    CAS PubMed Google Scholar
  32. Graff,J., Thies,R., Song,J., Celeste,A. & Melton,D. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179 (1994).
    Article CAS Google Scholar
  33. Hoppler,S., Brown,J. & Moon,R. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10, 2805–2817 (1996).
    Article CAS Google Scholar
  34. Chijiwa,T., Hagiwara,M. & Hidaka,H. A newly synthesized selective casein kinase I inhibitor, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide, and affinity purification of casein kinase I from bovine testis. J. Biol. Chem. 264, 4924–4927 (1989).
    CAS PubMed Google Scholar
  35. Tabara,H., Grishok,A. & Mello,C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).
    Article CAS Google Scholar
  36. Sharp,P. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).
    Article CAS Google Scholar
  37. Fire,A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article ADS CAS Google Scholar
  38. Willert,K., Brink,M., Wodarz,A., Varmus,H. & Nusse,R. Cusein kinase 2 associates with and phosphorylates Dishevelled. EMBO J. 16, 3089–3096 (1997).
    Article CAS Google Scholar
  39. Deardorff,M., Tan,C., Conrad,L. & Klein,P. Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125, 2687–2700 (1998).
    CAS PubMed Google Scholar
  40. Sokol,S. Analysis of Dishevelled signaling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).
    Article CAS Google Scholar
  41. Zeng,L. et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).
    Article CAS Google Scholar
  42. Yost,C. et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031–1041 (1998).
    Article CAS Google Scholar
  43. Yanagawa,S., van Leeuwen,F., Wodarz,A., Klingensmith,J. & Nusse,R. The dishevelled protein is modified by Wingless signaling in Drosophila. Genes Dev. 9, 1087–1097 (1995).
    Article CAS Google Scholar
  44. Graff,J., Bansal,A. & Melton,D. Xenopus Mad proteins transduce distinct subsets of signals for the TGFβ superfamily. Cell 85, 479–487 (1996).
    Article CAS Google Scholar
  45. Ho,S., Hunt,H., Horton,R., Pullen,J. & Pease,L. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).
    Article CAS Google Scholar
  46. Bowerman,B., Tax,F., Thomas,J. & Priess,J. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development 116, 1113–1122 (1992).
    CAS PubMed Google Scholar
  47. Bowerman,B., Draper,B., Mello,C. & Priess,J. The material gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74, 443–452 (1993).
    Article CAS Google Scholar
  48. Epstein,H. & Shakes,D. in Methods in Cell Biology (eds Wilson, L. & Matsudaira, P.) (Academic, San Diego, 1995).
    Google Scholar
  49. Krieg,P. A., Varnum,S., Wormington,M. & Melton,D. A. The mRNA encoding elongation factor 1α (EF-1α) is a major transcript at the mid blastula transition in Xenopus. Dev. Biol. 133, 93–100 (1989).
    Article CAS Google Scholar
  50. Chien,C., Bartel,P., Sternglanz,R. & Fields,S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. 88, 9578–9582 (1991).
    Article ADS CAS Google Scholar

Download references