The p66shc adaptor protein controls oxidative stress response and life span in mammals (original) (raw)

References

  1. Martin,G. M., Austad,S. N. & Johnson,T. E. Genetic analysis of aging: role of oxidative damage and environmental stresses. Nature Genet. 13, 25–34 (1996).
    Article CAS PubMed Google Scholar
  2. Migliaccio,E. et al. Opposite effects of the p52shc/p46shc splicing isoforms on the EGF receptor-MAP kinase-fos signaling pathway. EMBO J. 16, 706–716 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  3. Pelicci,G et al. A novel transforming protein (SHC) with a SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93–104 (1992).
    Article CAS PubMed Google Scholar
  4. Bonfini,L., Migliaccio,E., Pelicci,G., Lanfrancone,L. & Pelicci,P. G. Not all Shc's roads lead to Ras. Trends Biochem. Sci. 21, 257–261 (1996).
    Article CAS PubMed Google Scholar
  5. Rozakis-Adcock,M. et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinase. Nature 360, 689–692 (1992).
    Article ADS CAS PubMed Google Scholar
  6. Sen,C. & Packer,L. Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709–720 (1996).
    Article CAS PubMed Google Scholar
  7. Renzing,J., Hansen,S. & Lane,D. P. Oxidative stress is involved in the UV activation of p53. J. Cell Sci. 109, 1105–1112 (1996).
    Article CAS PubMed Google Scholar
  8. Stevenson,M. A., Pollock,S. S., Coleman,C. N. & Calderwood,S. K. X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NiH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res. 54, 12–15 (1994).
    CAS PubMed Google Scholar
  9. Lu,X. & Lane,D. P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765–778 (1993).
    Article CAS PubMed Google Scholar
  10. Deng,C., Zhang,P., Harper,J. W., Elledge,S. J. & Leder,P. Mice lacking p21CIP/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).
    Article CAS PubMed Google Scholar
  11. Russo,T. et al. A p53-independent pathway for activation of WAF1/C1P1 expression following oxidative stress. J. Biol. Chem. 270, 29386–29391 (1995).
    Article CAS PubMed Google Scholar
  12. Macleod,K. F. et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935–944 (1995).
    Article CAS PubMed Google Scholar
  13. Yin,Y., Solomon,G., Deng,C. & Barrett,J. C. Differential regulation of p21 by p53 and Rb in cellular response to oxidative stress. Mol. Carcin. 24, 15–24 (1999).
    Article CAS Google Scholar
  14. Yin,Y. et al. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391, 707–710 (1998).
    Article ADS CAS PubMed Google Scholar
  15. De Haan j.,B. et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273, 22528–22536 (1998).
    Article PubMed Google Scholar
  16. Sun,J., Childress,A. M., Pinswasdl,C. & Jazwinski,S. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269, 18638–18645 (1994).
    Article CAS PubMed Google Scholar
  17. Kennedy,B. K., Austriaco,N. R., Zhang,J. & Guarente,L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496 (1995).
    Article CAS PubMed Google Scholar
  18. Murakami,S. & Johnson,T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207–1218 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  19. Larsen,P. L., Albert,P. S. & Riddle,D. L. Genes that regulate both development and longevity in C. elegans. Genetics 139, 1576–1583 (1995).
    Article Google Scholar
  20. Service,P. M., Hutchinson,E. W., MacKinley,M. D. & Rose,M. R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58, 380–389 (1985).
    Article Google Scholar
  21. Lin,Y. J., Seroude,L. & Benzer,S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).
    Article ADS CAS PubMed Google Scholar
  22. Ishi,N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694–697 (1998).
    Article ADS Google Scholar
  23. Orr,W. C. & Sohal,R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in D. melanoganster. Science 263, 1128–1130 (1994).
    Article ADS CAS PubMed Google Scholar
  24. Marubini,E. & Valsecchi,M. G. Analysing Survival Data from Clinical Trials and Observational Studies (Wiley, New York, 1995).
    MATH Google Scholar
  25. Weindruch,R., Walford,R. L., Fligiel,S. & Guthetrie,D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116, 641–654 (1986).
    Article CAS PubMed Google Scholar
  26. Weindruch,R. & Walford,R. L. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215, 1415–1417 (1982).
    Article ADS CAS PubMed Google Scholar
  27. Medawar,P. B. Old age and natural death. Modern Quarterly 1, 30–56 (1946).
    Google Scholar
  28. Lithgow,G. J. & Kirkwood,T. B. L. Mechanisms and evolution of aging. Science 273, 80 (1996).
    Article ADS CAS PubMed Google Scholar
  29. Taub,J. et al. A cytosolic catalase is needed to extend adult life span in C. elegans daf-C and _clk_-1 mutants. Nature 399, 162–166 (1999).
    Article ADS CAS PubMed Google Scholar
  30. Sohal,R. S. & Weindruch,R. Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar

Download references