Absence of cancer–associated changes in human fibroblasts immortalized with telomerase (original) (raw)
References
Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science277, 955– 959 (1997). ArticleCAS Google Scholar
Meyerson, M. et al.hEST2, the putative human telomerase catalytic subunit gene, is up–regulated in tumor cells and during immortalization. Cell90, 785–795 ( 1997). ArticleCAS Google Scholar
Bodnar, A.G. et al. Extension of life–span by introduction of telomerase into normal human cells. Science279, 349 –352 (1998). ArticleCAS Google Scholar
Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol.8, 279– 282 (1998). ArticleCAS Google Scholar
Shay, J.W., Wright, W.E. & Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta1072, 1– 7 (1991). CASPubMed Google Scholar
Abercrombie, M. Contact inhibition in tissue culture. In Vitro6, 128–142 (1970). ArticleCAS Google Scholar
Scher, C.D. & Todaro, G.J. Selective growth of human neoplastic cells in medium lacking serum growth factor. Exp. Cell Res.68, 479–481 (1971). ArticleCAS Google Scholar
Buchovitch, K., Duffy, L.A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell58, 1097–1105 (1989). Article Google Scholar
DeCaprio, J.A. et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell58, 1085–1095 (1989). ArticleCAS Google Scholar
Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51 , 6304–6311 (1991). CAS Google Scholar
Levine, A.J., Momand, J. & Finlay, C.A. The p53 tumor suppressor gene. Nature351, 453–456 (1991). ArticleCAS Google Scholar
DiLeonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. DNA damage triggers a prolonged p53–dependent G1 arrest and long term induction of Cip1 in normal human fibroblasts. Genes Dev.8, 2540–2551 (1994). ArticleCAS Google Scholar
Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21Cip1/Waf1 gene in normal diploid human fibroblasts. Science277, 831–834 (1997). ArticleCAS Google Scholar
White, A.E., Livanos, E.M. & Tlsty, T.D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev.8, 666–677 ( 1994). ArticleCAS Google Scholar
Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCAS Google Scholar
Dimri, G.P. et al. A biomarker that identifies senscent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). ArticleCAS Google Scholar
Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCAS Google Scholar
Newbold, R.F. & Overell, R.W. Fibroblast immortality is a prerequisite for transformation by EJ c–Ha–ras oncogene. Nature304, 648–651 ( 1983). ArticleCAS Google Scholar
Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect.93, 59–62 ( 1991). ArticleCAS Google Scholar
Nowell, P.C. & Croce, C.M. Cytogenetics of neoplasia. in Development and Recognition of the Transformed Cell (eds Greene, M.I. & Hamaoka, T.) 1–19 (Plenum, New York, 1987). Google Scholar
Honda, T. et al. Spontaneous immortalization of cultured skin fibroblasts obtained from a high–dose atomic bomb survivor. Mutat. Res.354, 15–26 ( 1996). Article Google Scholar
Saksela, E. & Moorhead, P.S. Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Proc. Natl Acad. Sci. USA50, 390–395 ( 1963). ArticleCAS Google Scholar
Benn, P.A. Specific chromosome abberations in senescent fibroblast cell lines derived from human embryos. Am. J. Hum. Genet.28, 465–473 (1976). CASPubMedPubMed Central Google Scholar
Halbert, C.L., Demers, G.W. & Galloway, D.A. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J. Virol.66, 2125–2134 ( 1992). CASPubMedPubMed Central Google Scholar
Holt, S.E., Gollahon, L.S., Willingham, T., Barbosa, M.S. & Shay, J.W. p53 levels in human mammary epithelial cells expressing wild–type and mutant human papilloma virus type 16 (HPV–16) E6 proteins: relationship to reactivation of telomerase and immortalization. Inter. J. Oncol.8, 263 –270 (1996). CAS Google Scholar
Shay, J.W., Tomlinson, G., Piatyszek, M.A. & Gollahon, L.S. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li–Fraumeni syndrome. Mol. Cell. Biol.15, 425–432 (1995). ArticleCAS Google Scholar
Holt, S.E., Aisner, D.L., Shay, J.W. & Wright, W.E. Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl Acad. Sci. USA94, 10687–10692 (1997). ArticleCAS Google Scholar
Clark, G.J., Cox, A.D., Graham, S.M. & Der, C.J. in Methods in Enzymology (eds Balch, W.E., Der, C.J. & Hall, A.) 395– 412 (Academic Press, San Diego, 1995). Google Scholar
Gustashaw K.M. in The AGT Cytogenetics Laboratory Manual (eds Barch, M.J., Knutsen, T. & Spurbeck, J.L.) 259–324 (Lippincott–Raven, Philadelphia, 1997). Google Scholar