Absence of cancer–associated changes in human fibroblasts immortalized with telomerase (original) (raw)

References

  1. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955– 959 (1997).
    Article CAS Google Scholar
  2. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up–regulated in tumor cells and during immortalization. Cell 90, 785–795 ( 1997).
    Article CAS Google Scholar
  3. Bodnar, A.G. et al. Extension of life–span by introduction of telomerase into normal human cells. Science 279, 349 –352 (1998).
    Article CAS Google Scholar
  4. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279– 282 (1998).
    Article CAS Google Scholar
  5. Shay, J.W., Wright, W.E. & Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1072, 1– 7 (1991).
    CAS PubMed Google Scholar
  6. Abercrombie, M. Contact inhibition in tissue culture. In Vitro 6, 128–142 (1970).
    Article CAS Google Scholar
  7. Scher, C.D. & Todaro, G.J. Selective growth of human neoplastic cells in medium lacking serum growth factor. Exp. Cell Res. 68, 479–481 (1971).
    Article CAS Google Scholar
  8. Buchovitch, K., Duffy, L.A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097–1105 (1989).
    Article Google Scholar
  9. DeCaprio, J.A. et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58, 1085–1095 (1989).
    Article CAS Google Scholar
  10. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51 , 6304–6311 (1991).
    CAS Google Scholar
  11. Levine, A.J., Momand, J. & Finlay, C.A. The p53 tumor suppressor gene. Nature 351, 453–456 (1991).
    Article CAS Google Scholar
  12. DiLeonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. DNA damage triggers a prolonged p53–dependent G1 arrest and long term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).
    Article CAS Google Scholar
  13. Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21Cip1/Waf1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).
    Article CAS Google Scholar
  14. White, A.E., Livanos, E.M. & Tlsty, T.D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677 ( 1994).
    Article CAS Google Scholar
  15. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).
    Article CAS Google Scholar
  16. Dimri, G.P. et al. A biomarker that identifies senscent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
    Article CAS Google Scholar
  17. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).
    Article CAS Google Scholar
  18. Newbold, R.F. & Overell, R.W. Fibroblast immortality is a prerequisite for transformation by EJ c–Ha–ras oncogene. Nature 304, 648–651 ( 1983).
    Article CAS Google Scholar
  19. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93, 59–62 ( 1991).
    Article CAS Google Scholar
  20. Nowell, P.C. & Croce, C.M. Cytogenetics of neoplasia. in Development and Recognition of the Transformed Cell (eds Greene, M.I. & Hamaoka, T.) 1–19 (Plenum, New York, 1987).
    Google Scholar
  21. Honda, T. et al. Spontaneous immortalization of cultured skin fibroblasts obtained from a high–dose atomic bomb survivor. Mutat. Res. 354, 15–26 ( 1996).
    Article Google Scholar
  22. Saksela, E. & Moorhead, P.S. Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Proc. Natl Acad. Sci. USA 50, 390–395 ( 1963).
    Article CAS Google Scholar
  23. Benn, P.A. Specific chromosome abberations in senescent fibroblast cell lines derived from human embryos. Am. J. Hum. Genet. 28, 465–473 (1976).
    CAS PubMed PubMed Central Google Scholar
  24. Halbert, C.L., Demers, G.W. & Galloway, D.A. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J. Virol. 66, 2125–2134 ( 1992).
    CAS PubMed PubMed Central Google Scholar
  25. Holt, S.E., Gollahon, L.S., Willingham, T., Barbosa, M.S. & Shay, J.W. p53 levels in human mammary epithelial cells expressing wild–type and mutant human papilloma virus type 16 (HPV–16) E6 proteins: relationship to reactivation of telomerase and immortalization. Inter. J. Oncol. 8, 263 –270 (1996).
    CAS Google Scholar
  26. Shay, J.W., Tomlinson, G., Piatyszek, M.A. & Gollahon, L.S. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li–Fraumeni syndrome. Mol. Cell. Biol. 15, 425–432 (1995).
    Article CAS Google Scholar
  27. Holt, S.E., Aisner, D.L., Shay, J.W. & Wright, W.E. Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl Acad. Sci. USA 94, 10687–10692 (1997).
    Article CAS Google Scholar
  28. Clark, G.J., Cox, A.D., Graham, S.M. & Der, C.J. in Methods in Enzymology (eds Balch, W.E., Der, C.J. & Hall, A.) 395– 412 (Academic Press, San Diego, 1995).
    Google Scholar
  29. Gustashaw K.M. in The AGT Cytogenetics Laboratory Manual (eds Barch, M.J., Knutsen, T. & Spurbeck, J.L.) 259–324 (Lippincott–Raven, Philadelphia, 1997).
    Google Scholar

Download references