The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate (original) (raw)

References

  1. Solomon, L. Hereditary multiple exostosis. J. Bone Joint Surg. 45, 292–304 (1963).
    Article Google Scholar
  2. Hennekam, R.C. Hereditary multiple exostoses. J. Med. Genet. 28, 262 –266 (1991).
    Article CAS Google Scholar
  3. Leone, N.C. et al. Hereditary multiple exostosis. A comparative human-equine-epidemiologic study. J. Hered. 78, 171–177 (1987).
    Article CAS Google Scholar
  4. Schmale, G.A., Conrad, E.U. Raskind, W.H. The natural history of hereditary multiple exostoses. J. Bone Joint Surg. Am. 76, 986–992 ( 1994).
    Article CAS Google Scholar
  5. Luckert-Wicklund, C., Pauli, R., Johnston, D. Hecht, J. Natural history of hereditary multiple exostoses. Am. J. Med. Genet. 55, 43–46 (1995).
    Article Google Scholar
  6. Ahn, J. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).
    Article CAS Google Scholar
  7. Cook, A. et al. Genetic heterogeneity in families with hereditary multiple exostoses. Am. J. Hum. Genet. 53, 71–79 (1993).
    CAS PubMed PubMed Central Google Scholar
  8. LeMerrer, M. et al. A gene for hereditary multiple exostoses maps to chromosome 19p. Hum. Mol. Genet. 3, 717–722 (1994).
    Article CAS Google Scholar
  9. Wu, Y.Q. et al. Assignment of a second locus for multiple exostoses to the pericentromeric region of chromosome 11. Hum. Mol. Genet. 3, 167–171 (1994).
    Article CAS Google Scholar
  10. Philippe, C. et al. Mutation screening of the EXT1 and EXT2 genes in patients with hereditary multiple exostoses. Am. J. Hum. Genet. 61, 520–528 (1997).
    Article CAS Google Scholar
  11. WuDunn, D. Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58 (1989).
    Article CAS Google Scholar
  12. Herold, B.C., Visalli, R.J., Susmarski, N., Brandt, C.R. Spear, P.G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J. Gen. Virol. 75, 1211–1222 ( 1994).
    Article CAS Google Scholar
  13. Herold, B.C., WuDunn, D., Soltys, N. Spear, P.G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 65, 1090–1098 (1991).
    Article CAS Google Scholar
  14. Cai, W., Gu, B. Person, S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J. Virol. 62, 2596–2604 (1988).
    Article CAS Google Scholar
  15. Banfield, B.W., Leduc, Y., Esford, L., Schubert, K. Tufaro, F. Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway. J. Virol. 69, 3290–3298 (1995).
    Article CAS Google Scholar
  16. Gruenheid, S., Gatzke, L., Meadows, H. Tufaro, F. Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J. Virol. 67, 93–100 (1993).
    Article CAS Google Scholar
  17. Schutze, M.P., Peterson, P.A. Jackson, M.R. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic retiuculum. EMBO J. 13, 1696–1705 (1994).
    Article CAS Google Scholar
  18. Teasdale, R.D. Jackson, M.R. Signal-Mediated Sorting of Membrane Proteins Between the Endoplasmic Reticulum and the Golgi Apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).
    Article CAS Google Scholar
  19. Hecht, J.T. et al. Hereditary multiple exostoses (EXT): mutational studies of familial EXT1 cases and EXT-associated malignancies. Am. J. Hum. Genet. 60, 80–86 (1997).
    CAS PubMed PubMed Central Google Scholar
  20. Bernstein, L.R. Liotta, L.A. Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol. 6, 106–113 (1994).
    Article CAS Google Scholar
  21. Tuszynski, G.P., Wang, T.N. Berger, D. Adhesive proteins and the hematogenous spread of cancer. Acta Haematol. 97, 29–39 ( 1997).
    Article CAS Google Scholar
  22. Schamhart, D.H. Kurth, K.H. Role of proteoglycans in cell adhesion of prostate cancer cells: from review to experiment. Urol. Res. 25, S89–96 ( 1997).
    Article CAS Google Scholar
  23. Esko, J.D., Rostand, K.S. Weinke, J.L. Tumour formation dependent on proteoglycan biosynthesis. Science 241, 1092–1096 ( 1988).
    Article CAS Google Scholar
  24. Iida, J., Meijne, A.M., Knutson, J.R., Furcht, L.T. McCarthy, J.B. Cell surface chondroitin sulfate proteoglycans in tumour cell adhesion, motility and invasion. Semin. Cancer Biol. 7, 155–162 (1996).
    Article CAS Google Scholar
  25. Iozzo, R.V. Cohen, I. Altered proteoglycan gene expression and the tumour stroma. Experientia 49, 447–455 (1993).
    Article CAS Google Scholar
  26. Wise, C.A., Clines, G.A., Massa, H., Trask, B.J. Lovett, M. Identification and localization of the gene for EXTL, a third member of the multiple exostoses gene family. Genome Res. 7, 10–16 (1997).
    Article CAS Google Scholar
  27. Wuyts, W. et al. Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur. J. Hum. Genet. 5, 382–389 (1997).
    Article CAS Google Scholar
  28. Van Hul, W. et al. Identification of a Third EXT-like Gene (EXTL3) Belonging to the EXT Gene Family. Genomics 47, 230–237 (1998).
    Article CAS Google Scholar
  29. Esko, J.D., Stewart, T.E. Taylor, W.H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 82, 3197–3201 (1985).
    Article CAS Google Scholar
  30. Bame, K.J. Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065 (1989).
    CAS PubMed Google Scholar

Download references