Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin–dependent neointimal formation (original) (raw)
References
Silver, M.M., Freedom, R.M., Silver, M.D. & Olley, P.M. The morphology of the human newborn ductus arteriosus: A reappraisal of its structure and closure with special reference to prostaglandin E1 therapy. Hum. Pathol.12, 1123– 1136 (1981). ArticleCASPubMed Google Scholar
Gittenberger–de Groot, A.C., Strengers, J.L., Mentink, M., Poelmann, R.E. & Patterson, D.F. Histologic studies on normal and persistent ductus arteriosus in the dog. J. Am. Coll. Cardiol.6, 394– 404 (1985). ArticlePubMed Google Scholar
Gittenberger–de Groot, A.C., van Ertbruggen, I., Moulaert, A.J. & Harinck, E. The ductus arteriosus in the preterm infant: Histologic and clinical observations. J. Pediatr.96, 88–93 (1980). ArticlePubMed Google Scholar
Gittenberger–de Groot, A.C., Moulaert, A.J. & Hitchcock, J.F. Histology of the persistent ductus arteriosus in cases of congenital rubella. Circulation62, 183–186 (1980). ArticlePubMed Google Scholar
Olley, P.M., Coceani, F. & Bodach, E. E–type prostaglandins: A new emergency therapy for certain cyanotic congenital heart malformations. Circulation53, 728–731 (1976). ArticleCASPubMed Google Scholar
Host, A., Halken, S., Kamper, J. & Lillquist, K. Prostaglandin E1 treatment in ductus dependent congenital cardiac malformation. A review of the treatment of 34 neonates. Dan. Med. Bull.35, 81–84 (1988). CASPubMed Google Scholar
Hallidie, S.K. Prostaglandin E1 in suspected ductus dependent cardiac malformation. Arch. Dis. Child.59, 1020–1026 (1984). Article Google Scholar
Boudreau, N. & Rabinovitch, M. Developmentally regulated changes in extracellular matrix in endothelial and smooth muscle cells in the ductus arteriosus may be related to intimal proliferation. Lab. Invest.64, 187–199 (1991). CASPubMed Google Scholar
Boudreau, N., Turley, E. & Rabinovitch, M. Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev. Biol.143, 235–247 (1991). ArticleCASPubMed Google Scholar
Boudreau, N., Clausell, N., Boyle, J. & Rabinovitch, M. Transforming growth factor–beta regulates increased ductus arteriosus endothelial glycosaminoglycan synthesis and a post–transcriptional mechanism controls increased smooth muscle fibronectin, features associated with intimal proliferation. Lab. Invest.67, 350–359 (1992). CASPubMed Google Scholar
Zhou, B., Boudreau, N., Coulber, C., Hammarback, J. & Rabinovitch, M. Microtubule–associated protein 1 light chain 3 is a fibronectin mRNA–binding protein linked to mRNA translation in lamb vascular smooth muscle cells. J. Clin. Invest.100, 3070–3082 (1997). ArticleCASPubMedPubMed Central Google Scholar
Morishita, R. et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl. Acad. Sci. USA92, 5855– 5859 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yoder, M.J., Baumann, F.G., Grover, J.N., Brick, I. & Imparato, A.M. A morphological study of early cellular changes in the closure of the rabbit ductus arteriosus. Anat. Rec.192, 19–39 (1978). ArticleCASPubMed Google Scholar
Hornblad, P.Y. Studies on closure of the ductus arteriosus. III. Species differences in closure rate and morphology. Cardiology51, 262– 282 (1967). ArticleCAS Google Scholar
Kaneda, Y., Morishita, R. & Dzau, V.J. Prevention of restenosis by gene therapy. Ann. NY Acad. Sci.811, 299–310 (1997). ArticleCASPubMed Google Scholar
Mann, M.J., Morishita, R., Gibbons, G.H., von der Leyen, H.E. & Dzau, V.J. DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HVJ)–liposomes. Mol. Cell. Biochem.172, 3–12 (1997). ArticleCASPubMed Google Scholar
Rome, J.J. et al. Adenoviral vector–mediated gene transfer into sheep arteries using a double–balloon catheter. Hum. Gene. Ther.5, 1249–1258 (1994). ArticleCASPubMed Google Scholar
Zhou, B. & Rabinovitch, M. Microtubule involvement in translational regulation of fibronectin expression by light chain 3 of microtubule–associated protein 1 in vascular smooth muscle cells. Circ. Res.83, 481–489 (1998). ArticleCASPubMed Google Scholar
Lemaitre, J.M., Buckle, R.S. & Mechali, M. c–Myc in the control of cell proliferation and embryonic development. Adv. Cancer Res.70, 95–144 (1996). ArticleCASPubMed Google Scholar
Liebermann, D.A., Gregory, B. & Hoffman, B. AP–1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis. Int. J. Oncol.12, 685–700 (1998). CASPubMed Google Scholar
Chen, C.Y.A., Xu, N., Shyu, A.B. mRNA–decay mediated by two distinct AU–rich elements from c–fos and granulocyte–macrophage colony stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol. Cell. Biol.15, 5777–5788 (1995). ArticleCASPubMedPubMed Central Google Scholar
Veyrune, J.L., Hesketh, J. & Blanchard, J.M. 3' untranslated regions of c–myc and c–fos mRNAs: multifunctional elements regulating mRNA translation, degradation and subcellular localization. Prog. Mol. Subcell. Biol.18, 35–63 (1997). ArticleCASPubMed Google Scholar
Jones, P.L., Cowan, K.N. & Rabinovitch, M. Tenascin–C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am. J. Pathol.150, 1349–1360 (1997). CASPubMedPubMed Central Google Scholar
Botney, M.D. et al. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. Am. J. Pathol.140, 357–364 (1992). CASPubMedPubMed Central Google Scholar
Clausell, N. et al. Expression of tumour necrosis factor alpha and accumulation of fibronectin in coronary artery restenotic lesions retrieved by atherectomy. Br. Heart J.73, 534–539 (1995). ArticleCASPubMedPubMed Central Google Scholar
Forsyth, E.A., Aly, H.M., Neville, R.F. & Sidawy, A.N. Proliferation and extracellular matrix production by human infragenicular smooth muscle cells in response to interleukin–1 beta. J. Vasc. Surg.26, 1002–1008 (1997). ArticleCASPubMed Google Scholar
Sanders, M. Molecular and cellular concepts in atherosclerosis. Pharmacol. Ther.61, 109–153 (1994). ArticleCASPubMed Google Scholar
Molossi, S., Clausell, N. & Rabinovitch, M. Coronary artery endothelial interleukin–1 beta mediates enhanced fibronectin production related to post–cardiac transplant arteriopathy in piglets. Circulation 248– 256 (1993).
Molossi, S. et al. Blockade of very late antigen–4 integrin binding to fibronectin with connecting segment–1 peptide reduces accelerated coronary arteriopathy in rabbit cardiac allografts. J. Clin. Invest.95, 2601–2610 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kaneda, Y., Iwai, K., & Uchida, T. Introduction and expression of the human insulin gene in adult rat liver. J. Biol. Chem.264, 12126–12129 (1989). CASPubMed Google Scholar