Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin–dependent neointimal formation (original) (raw)

References

  1. Silver, M.M., Freedom, R.M., Silver, M.D. & Olley, P.M. The morphology of the human newborn ductus arteriosus: A reappraisal of its structure and closure with special reference to prostaglandin E1 therapy. Hum. Pathol. 12, 1123– 1136 (1981).
    Article CAS PubMed Google Scholar
  2. Gittenberger–de Groot, A.C., Strengers, J.L., Mentink, M., Poelmann, R.E. & Patterson, D.F. Histologic studies on normal and persistent ductus arteriosus in the dog. J. Am. Coll. Cardiol. 6, 394– 404 (1985).
    Article PubMed Google Scholar
  3. Gittenberger–de Groot, A.C., van Ertbruggen, I., Moulaert, A.J. & Harinck, E. The ductus arteriosus in the preterm infant: Histologic and clinical observations. J. Pediatr. 96, 88–93 (1980).
    Article PubMed Google Scholar
  4. Gittenberger–de Groot, A.C., Moulaert, A.J. & Hitchcock, J.F. Histology of the persistent ductus arteriosus in cases of congenital rubella. Circulation 62, 183–186 (1980).
    Article PubMed Google Scholar
  5. Olley, P.M., Coceani, F. & Bodach, E. E–type prostaglandins: A new emergency therapy for certain cyanotic congenital heart malformations. Circulation 53, 728–731 (1976).
    Article CAS PubMed Google Scholar
  6. Host, A., Halken, S., Kamper, J. & Lillquist, K. Prostaglandin E1 treatment in ductus dependent congenital cardiac malformation. A review of the treatment of 34 neonates. Dan. Med. Bull. 35, 81–84 (1988).
    CAS PubMed Google Scholar
  7. Hallidie, S.K. Prostaglandin E1 in suspected ductus dependent cardiac malformation. Arch. Dis. Child. 59, 1020–1026 (1984).
    Article Google Scholar
  8. Boudreau, N. & Rabinovitch, M. Developmentally regulated changes in extracellular matrix in endothelial and smooth muscle cells in the ductus arteriosus may be related to intimal proliferation. Lab. Invest. 64, 187–199 (1991).
    CAS PubMed Google Scholar
  9. Boudreau, N., Turley, E. & Rabinovitch, M. Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev. Biol. 143, 235–247 (1991).
    Article CAS PubMed Google Scholar
  10. Boudreau, N., Clausell, N., Boyle, J. & Rabinovitch, M. Transforming growth factor–beta regulates increased ductus arteriosus endothelial glycosaminoglycan synthesis and a post–transcriptional mechanism controls increased smooth muscle fibronectin, features associated with intimal proliferation. Lab. Invest. 67, 350–359 (1992).
    CAS PubMed Google Scholar
  11. Zhou, B., Boudreau, N., Coulber, C., Hammarback, J. & Rabinovitch, M. Microtubule–associated protein 1 light chain 3 is a fibronectin mRNA–binding protein linked to mRNA translation in lamb vascular smooth muscle cells. J. Clin. Invest. 100, 3070–3082 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  12. Morishita, R. et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl. Acad. Sci. USA 92, 5855– 5859 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  13. Yoder, M.J., Baumann, F.G., Grover, J.N., Brick, I. & Imparato, A.M. A morphological study of early cellular changes in the closure of the rabbit ductus arteriosus. Anat. Rec. 192, 19–39 (1978).
    Article CAS PubMed Google Scholar
  14. Hornblad, P.Y. Studies on closure of the ductus arteriosus. III. Species differences in closure rate and morphology. Cardiology 51, 262– 282 (1967).
    Article CAS Google Scholar
  15. Kaneda, Y., Morishita, R. & Dzau, V.J. Prevention of restenosis by gene therapy. Ann. NY Acad. Sci. 811, 299–310 (1997).
    Article CAS PubMed Google Scholar
  16. Mann, M.J., Morishita, R., Gibbons, G.H., von der Leyen, H.E. & Dzau, V.J. DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HVJ)–liposomes. Mol. Cell. Biochem. 172, 3–12 (1997).
    Article CAS PubMed Google Scholar
  17. Rome, J.J. et al. Adenoviral vector–mediated gene transfer into sheep arteries using a double–balloon catheter. Hum. Gene. Ther. 5, 1249–1258 (1994).
    Article CAS PubMed Google Scholar
  18. Zhou, B. & Rabinovitch, M. Microtubule involvement in translational regulation of fibronectin expression by light chain 3 of microtubule–associated protein 1 in vascular smooth muscle cells. Circ. Res. 83, 481–489 (1998).
    Article CAS PubMed Google Scholar
  19. Lemaitre, J.M., Buckle, R.S. & Mechali, M. c–Myc in the control of cell proliferation and embryonic development. Adv. Cancer Res. 70, 95–144 (1996).
    Article CAS PubMed Google Scholar
  20. Liebermann, D.A., Gregory, B. & Hoffman, B. AP–1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis. Int. J. Oncol. 12, 685–700 (1998).
    CAS PubMed Google Scholar
  21. Brewer, G. An A+U–rich element RNA–binding factor regulates c–myc RNA stability in vitro. Mol. Cell. Biol. 11, 2460–2466 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  22. Chen, C.Y.A., Xu, N., Shyu, A.B. mRNA–decay mediated by two distinct AU–rich elements from c–fos and granulocyte–macrophage colony stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol. Cell. Biol. 15, 5777–5788 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  23. Veyrune, J.L., Hesketh, J. & Blanchard, J.M. 3' untranslated regions of c–myc and c–fos mRNAs: multifunctional elements regulating mRNA translation, degradation and subcellular localization. Prog. Mol. Subcell. Biol. 18, 35–63 (1997).
    Article CAS PubMed Google Scholar
  24. Jones, P.L., Cowan, K.N. & Rabinovitch, M. Tenascin–C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am. J. Pathol. 150, 1349–1360 (1997).
    CAS PubMed PubMed Central Google Scholar
  25. Botney, M.D. et al. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. Am. J. Pathol. 140, 357–364 (1992).
    CAS PubMed PubMed Central Google Scholar
  26. Clausell, N. et al. Expression of tumour necrosis factor alpha and accumulation of fibronectin in coronary artery restenotic lesions retrieved by atherectomy. Br. Heart J. 73, 534–539 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  27. Forsyth, E.A., Aly, H.M., Neville, R.F. & Sidawy, A.N. Proliferation and extracellular matrix production by human infragenicular smooth muscle cells in response to interleukin–1 beta. J. Vasc. Surg. 26, 1002–1008 (1997).
    Article CAS PubMed Google Scholar
  28. Sanders, M. Molecular and cellular concepts in atherosclerosis. Pharmacol. Ther. 61, 109–153 (1994).
    Article CAS PubMed Google Scholar
  29. Molossi, S., Clausell, N. & Rabinovitch, M. Coronary artery endothelial interleukin–1 beta mediates enhanced fibronectin production related to post–cardiac transplant arteriopathy in piglets. Circulation 248– 256 (1993).
  30. Molossi, S. et al. Blockade of very late antigen–4 integrin binding to fibronectin with connecting segment–1 peptide reduces accelerated coronary arteriopathy in rabbit cardiac allografts. J. Clin. Invest. 95, 2601–2610 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  31. Kaneda, Y., Iwai, K., & Uchida, T. Introduction and expression of the human insulin gene in adult rat liver. J. Biol. Chem. 264, 12126–12129 (1989).
    CAS PubMed Google Scholar

Download references