Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta (original) (raw)

References

  1. Rickard, D.J., Sullivan, T.A., Shenker, B.J., Leboy, P.S. & Kazhdan, I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev. Biol. 161, 218–228 (1993).
    Article Google Scholar
  2. Malaval, L., Modrowski, D., Gupta, A.K. & Aubin, J.E. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J. Cell. Physiol. 158, 555–572 (1994).
    Article CAS Google Scholar
  3. Goshima, J., Goldberg, V. & Caplan, A. The osteogenic potential of culture expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. 262, 298– 311 (1991).
    Google Scholar
  4. Ohgushi, H., Goldberg, V.M. & Caplan, A.I. Repair of bone defects with marrow cells and porous ceramic: Experiments in rats. Acta Orthop. Scand. 60 , 334–339 (1989).
    Article CAS Google Scholar
  5. Nakahara, H., Goldberg, V.M. & Caplan, A.I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476 (1997).
    Article Google Scholar
  6. Triffitt, J.T. in Principles of Bone Biology (eds. Bilezikian, J.P., Riasz, L.G. & Rodan, G.A.) 39–50 (Academic, San Diego, California 1996).
    Google Scholar
  7. Aubin, J.E. & Liu, F. in Principles of Bone Biology (eds. Bilezikian, J.P., Riasz, L.G. & Rodan, G.A.) 51– 67 (Academic, San Diego, California 1996).
    Google Scholar
  8. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).
    Article CAS Google Scholar
  9. Onyia, J.E., Clapp, D.W., Long, H. & Hock, J.M. Trabecular and endosteal osteoprogenitor cells as targets for ex-vivo gene transfer. J. Bone Min. Res. 13, 20–30 (1998).
    Article CAS Google Scholar
  10. Hou, Z. et al. Bone tissue-targeted expression of an osteocalcin promoter-reporter construct delivered by total bone marrow adherent cell transplantation. J. Bone Miner. Res. S428 (1997).
  11. Pereira, R.F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92, 4857– 4861 (1995).
    Article CAS Google Scholar
  12. Byers, P.H. in The Metabolic and Molecular Bases of Inherited Disease 3rd edn. (eds. Scriver C.R., Beaudet A.L., Sly W.S. & Valle D.) 4029 –4077 (McGraw-Hill, New York, 1995 ).
    Google Scholar
  13. Sillence, D.O. in Principles and Practice of Medical Genetics 3rd edn. (eds. Rimoin D.L., Connor J.M. & Pyeritz R.E.) 2779– 2816 (Churchill Livingstone, New York, 1997).
    Google Scholar
  14. Marini, J.C. & Gerber, N.L. Osteogenesis imperfecta. Rehabilitation and prospects for gene therapy. J. Am. Med. Assoc. 277, 746–750 (1997).
    Article CAS Google Scholar
  15. Glorieux, F.H. et al. Cyclic administration of Pamidronate in children with severe osteogenesis imperfecta. N. Engl. J. Med. 339, 947–952, 1998.
    Article CAS Google Scholar
  16. Pereira, R.F. et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA 95, 1142– 1147 (1998).
    Article CAS Google Scholar
  17. Frost, H.M. in Orthopedic Lectures Vol. III, 59 and 124–130 (Charles C. Thomas Publisher, Springfield, Illinois, 1973 ).
    Google Scholar
  18. Parsons, V. in Color Atlas of Bone Disease. 85 (Yearbook Medical Publishers Inc., Illinois, 1980).
    Google Scholar
  19. Jett, S., Ramser, J.R., Frost, H.M. & Villanueva, A.R. Bone Turnover and Osteogenesis Imperfecta. Arch. Pathol. 81, 112–116, 1966.
    CAS PubMed Google Scholar
  20. Koo, W.W.K., Bush, A.J., Walters, J. & Carlson, S.E. Postnatal development of bone mineral status during infancy. J. Amer. Coll. Nutr. 17, 65–70 (1998).
    Article CAS Google Scholar
  21. Hamill, P.V.V. et al. Physical growth: National Center for Health Statistics percentiles. Am. J. Clin. Nutr. 32, 607– 629, 1979.
    Article CAS Google Scholar
  22. Marini, J.C., Bordenick, S., Heavner, G., Rose, S. & Chrousos, G.P. Evaluation of growth hormone axis and responsiveness to growth stimulation of short children with osteogenesis imperfecta. Am. J. Med. Genet. 45, 261– 264 (1993).
    Article CAS Google Scholar
  23. Coccia, P.F. et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N. Engl. J. Med. 302, 701 –708 (1980).
    Article CAS Google Scholar
  24. Teitelbaum, S.L., Tondravi, M.M. & Ross, F.P. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption. J. Leukoc. Biol. 61, 381–388 (1997).
    Article CAS Google Scholar
  25. Sanders, J.E. et al. Growth and development following marrow transplantation for leukemia. Blood 68, 1129– 1135 (1986).
    CAS PubMed Google Scholar
  26. Growchow, L.B. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin. Oncol. 20 (4, Suppl 4) 18–25 (1993).
    Google Scholar
  27. Blazar, B.R. Pretransplant condition with busulfan and cyclophosphamide for nonmalignant diseases. Transplantation 9, 597– 603 (1985).
    Article Google Scholar
  28. Hartmann, O. et al. High-dose busulfan and cyclophosphamide with autologous bone marrow transplantation support in advanced malignancies in children: a phase II study. J. Clin. Oncol. 4, 1804– 1810 (1986).
    Article CAS Google Scholar
  29. Constantinou, C. et al. Phenotypic heterogeneity in osteogenesis imperfecta: the mildly affected mother of a proband with a lethal variant has the same mutation substituting cysteine for α-glycine 904 in a type I procollagen gene (COL1A1). Am. J. Hum. Genet. 47, 670–679 (1990).
    CAS PubMed PubMed Central Google Scholar
  30. Sokolov, B.P., Mays, P.K., Khillan, J.S. & Prockop, D.J. Tissue- and development-specific expression in transgenic mice in the type I procollagen (COL1A1) mini-gene construct with 2.3 kb of the promoter region and 2 kb of the 3'-flanking region. Specificity is independent of putative regulatory sequences of the first intron. Biochemistry 32, 9242–9249 (1993).
    Article CAS Google Scholar
  31. Malech, H.L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 94, 12133–12138 (1997).
    Article CAS Google Scholar
  32. Lajeunesse, D., Busque, L., Menard, P., Brunette, M.G. & Bonny, Y. Demonstration of an osteoblast defect in two cases of human malignant osteopetrosis. J. Clin. Invest. 98, 1835–1842 (1996).
    Article CAS Google Scholar
  33. Fedde, K.N. et al. Amelioration of the skeletal disease in hypophosphatasia by bone marrow transplantation using the alkaline phosphatase-knockout mouse model. Am. J. Hum. Genet. 59, A15 (1996).
    Google Scholar
  34. Robey, P.G. & Termine, J.D. Human bone cells in vitro. Calcif. Tissue Int. 37, 453– 460 (1985).
    Article CAS Google Scholar
  35. Koo, W.W.K., Masson, L.R. & Walters, J. Validation of accuracy and precision of dual energy x-ray absorptiometry for infants. J. Bone Miner. Res. 10, 1111–1115 (1995).
    Article CAS Google Scholar
  36. Koo, W.W.K., Walters, J., Bush, A.J., Chesny, R.W. & Carlson, S.E. Dual energy x-ray absorptiometry studies of bone mineral status of newborn infants. J. Bone Miner. Res. 11, 997–1002 (1995).
    Article Google Scholar

Download references