Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin (original) (raw)

References

  1. Simone, E. & Eisenbarth, G.S. Chronic autoimmunity of type I diabetes. Horm. Metab. Res. 28, 332– 336 (1996).
    Article CAS Google Scholar
  2. Kolb, H. et al. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J. Autoimmunity 3 (Suppl.), 117–120 (1990).
    Article Google Scholar
  3. Kröncke, K.-D., Kolb-Bachofen, V., Berschick, B., Burkart, V. & Kolb, H. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem. Biophys. Res. Commun. 175, 752– 758 (1991).
    Article Google Scholar
  4. Steiner, L., Kröncke, K.-D., Fehsel, K. & Kolb-Bachofen, V. Endothelial cells as cytotoxic effector cells: cytokine activated rat islet endothelial cells lyse syngeneic islet cells via nitric oxide. Diabetologia 40, 150–155 (1997).
    Article CAS Google Scholar
  5. Corbett, J.A., Wang, J.L., Sweetland, M.A., Lancaster, J.R. & McDaniel, M.L. IL-1β induces the formation of nitric oxide by β-cells purified from rodent islets of Langerhans: evidence for the β-cell as a source and site of action of nitric oxide. J. Clin. Invest. 90, 2384– 2391 (1992).
    Article CAS Google Scholar
  6. Suarez-Pinzon, W.L., Strynadka, K., Schulz, R. & Rabinovitch, A. Mechanisms of cytokine-induced destruction of rat insulinoma cells: the role of nitric oxide. Endocrinology 134, 1006 –1010 (1994).
    Article CAS Google Scholar
  7. McDaniel, M.L., Kwon, G., Hill, J.R., Marshall, C.A. & Corbett, J.A. Cytokines and nitric oxide in islet inflammation. Proc. Soc. Exp. Biol. Med. 211, 24– 32 (1996).
    Article CAS Google Scholar
  8. Fehsel, K. et al. Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42, 496– 500 (1993).
    Article CAS Google Scholar
  9. Kolb, H. Mouse models of insulin-dependent diabetes - Low dose streptozotocin induced diabetes and non obese diabetic (NOD) mice. Diabetes Metab. Rev. 3, 751–778 (1987).
    Article CAS Google Scholar
  10. Schnedl, W.J., Ferber, S., Johnson, J. & Newgard, C.B. STZ transport and cytotoxicity: Specific enhancement in GLUT2-expressing cells. Diabetes 43, 1326–1333 ( 1994).
    Article CAS Google Scholar
  11. Yamamoto, H., Uchigata, Y. & Okamoto, H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose)synthetase in pancreatic islets. Nature 294, 284–286 (1981).
    Article CAS Google Scholar
  12. Turk, J., Corbett, J.A., Ramanadham, S., Bohrer, A. & McDaniel, L. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem. Biophys. Res. Commun. 197, 1458– 1464 (1993).
    Article CAS Google Scholar
  13. Kröncke, K.-D., Fehsel, K., Sommer, A., Rodriguez, M.-L. & Kolb-Bachofen, V. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol. Chem. 376 , 179–185 (1995).
    Google Scholar
  14. Yamada, K. et al. Preventive and therapeutic aspects of large dose nicotinamide injections on diabetes associated with insulitis: an observation in non-obese diabetic (NOD) mice. Diabetes 31, 749– 753 (1982).
    Article CAS Google Scholar
  15. Lazarus, S. & Shapiro, S. H. Influence of nicotinamide and pyridine nucleotides on streptozotocin and alloxan induced pancreatic B cell cytotoxicity. Diabetes 22, 499– 506 (1973).
    Article CAS Google Scholar
  16. Sestelli, P. et al. Structural requirements for inhibitors of poly(ADP-ribose)polymerase. J. Cancer Res. Clin. Oncol. 116, 615– 622 (1990).
    Article Google Scholar
  17. Wang, Z.-Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995).
    Article CAS Google Scholar
  18. Cardinal, J.W., Allan, D.J. & Cameron, D.P. Differential metabolite accumulation may be the cause of strain differences in sensitivity to streptozotocin-induced β cell death in inbred mice. Endocrinology 139, 2885–2891 (1998).
    Article CAS Google Scholar
  19. Leist, M., Single, B., Castoldi, A.F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481– 1486 (1997).
    Article CAS Google Scholar
  20. Kallmann, B., Burkart, V., Krüncke, K.-D., Kolb-Bachofen, V. & Kolb, H. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci. 51, 671– 678 (1992).
    Article CAS Google Scholar
  21. Radons, J. et al. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem. Biophys. Res. Commun. 199, 1270– 1277 (1994).
    Article CAS Google Scholar
  22. Heller, B. et al. Inactivation or the poly(ADP-ribose)polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270, 11176–11180 ( 1995).
    Article CAS Google Scholar
  23. Eliasson, M. J. et al. Poly(ADP-ribose)polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997).
    Article CAS Google Scholar
  24. Zhang, J., Dawson, V.L., Dawson, T.M. & Snyder, S. H. Nitric oxide activation of poly(ADP-ribose)synthetase in neurotoxicity. Science 263, 687–689 ( 1994).
    Article CAS Google Scholar
  25. Thiemermann, C., Bowes, J., Myint, F.P. & Vane, J. R. Inhibition of the activity of poly(ADP-ribose)synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. USA 94, 679–683 (1997).
    Article CAS Google Scholar
  26. Berger, N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15 ( 1985).
    Article CAS Google Scholar
  27. Eguchi, Y., Shimizu, S. & Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57, 1835 –1840 (1997).
    CAS PubMed Google Scholar
  28. Rosenthal, D. S. et al. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp. Cell Res. 232, 313–321 (1997).
    Article CAS Google Scholar
  29. Simbulan-Rosenthal, C.M., Rosenthal, D.S., Iyer, S., Boulares, A.H. & Smulson, M.E. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose)polymerase in the early stages of apoptosis. J. Biol. Chem. 273, 13703– 13712 (1998).
    Article CAS Google Scholar
  30. Wang, Z.-Q. et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11, 2347– 2358 (1997).
    Article CAS Google Scholar
  31. Ménissier de Murcia, J. et al. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94, 7303–7307 ( 1997).
    Article Google Scholar
  32. Endres, M., Wang, Z.Q., Namura, S., Waeber, C. & Moskowitz, M.A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J. Cereb. Blood Flow Metab. 17, 1143–1151 (1997).
    Article CAS Google Scholar
  33. Eizirik, D.L., Sandler, S., Sener, A. & Malaisse, W.J. Defective catabolism of D-glucose and L-glutamine in mouse pancreatic islets maintained in culture after streptozotocin exposure. Endocrinol. 123, 1001–1007 (1988).
    Article CAS Google Scholar
  34. Rasschaert, J., Eizirik, D.L. & Malaisse, W.J. Long term in vitro effects of streptozotocin, interleukin-1, and high glucose concentration on the activity of mitochondrial dehydrogenases and the secretion of insulin in pancreatic islets. Endocrinol. 130, 3522–3528 (1992).
    Article CAS Google Scholar
  35. LeDoux, S.P., Hall, C.R., Forbes, P.M., Patton, N.J. & Wilson, G.L. Mechanisms of nicotinamide and thymidine protection from alloxan and streptozotocin toxicity. Diabetes 37, 1015–1019 (1988).
    Article CAS Google Scholar
  36. Delaney, C.A., Green, M.H.L., Lowe, J.E. & Green, I.C. Endogenous nitric oxide induced by interleukin-1b in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the 'comet' assay. FEBS Lett. 333, 291– 295 (1993).
    Article CAS Google Scholar
  37. Burkart, V. et al. Low dose streptozotocin-induced diabetes in mice: Reduced IL-2 production and modulation of streptozotocin induced hyperglycemia by IL-2. Int. J. Immunopharmac. 14, 1037– 1044 (1992).
    Article CAS Google Scholar
  38. Appels, B. et al. Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J. Immunol. 142, 3803– 3808 (1989).
    CAS PubMed Google Scholar

Download references