Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin (original) (raw)
References
Simone, E. & Eisenbarth, G.S. Chronic autoimmunity of type I diabetes. Horm. Metab. Res.28, 332– 336 (1996). ArticleCAS Google Scholar
Kolb, H. et al. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J. Autoimmunity3 (Suppl.), 117–120 (1990). Article Google Scholar
Kröncke, K.-D., Kolb-Bachofen, V., Berschick, B., Burkart, V. & Kolb, H. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem. Biophys. Res. Commun.175, 752– 758 (1991). Article Google Scholar
Steiner, L., Kröncke, K.-D., Fehsel, K. & Kolb-Bachofen, V. Endothelial cells as cytotoxic effector cells: cytokine activated rat islet endothelial cells lyse syngeneic islet cells via nitric oxide. Diabetologia40, 150–155 (1997). ArticleCAS Google Scholar
Corbett, J.A., Wang, J.L., Sweetland, M.A., Lancaster, J.R. & McDaniel, M.L. IL-1β induces the formation of nitric oxide by β-cells purified from rodent islets of Langerhans: evidence for the β-cell as a source and site of action of nitric oxide. J. Clin. Invest.90, 2384– 2391 (1992). ArticleCAS Google Scholar
Suarez-Pinzon, W.L., Strynadka, K., Schulz, R. & Rabinovitch, A. Mechanisms of cytokine-induced destruction of rat insulinoma cells: the role of nitric oxide. Endocrinology134, 1006 –1010 (1994). ArticleCAS Google Scholar
McDaniel, M.L., Kwon, G., Hill, J.R., Marshall, C.A. & Corbett, J.A. Cytokines and nitric oxide in islet inflammation. Proc. Soc. Exp. Biol. Med.211, 24– 32 (1996). ArticleCAS Google Scholar
Fehsel, K. et al. Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes42, 496– 500 (1993). ArticleCAS Google Scholar
Kolb, H. Mouse models of insulin-dependent diabetes - Low dose streptozotocin induced diabetes and non obese diabetic (NOD) mice. Diabetes Metab. Rev.3, 751–778 (1987). ArticleCAS Google Scholar
Schnedl, W.J., Ferber, S., Johnson, J. & Newgard, C.B. STZ transport and cytotoxicity: Specific enhancement in GLUT2-expressing cells. Diabetes43, 1326–1333 ( 1994). ArticleCAS Google Scholar
Yamamoto, H., Uchigata, Y. & Okamoto, H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose)synthetase in pancreatic islets. Nature294, 284–286 (1981). ArticleCAS Google Scholar
Turk, J., Corbett, J.A., Ramanadham, S., Bohrer, A. & McDaniel, L. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem. Biophys. Res. Commun.197, 1458– 1464 (1993). ArticleCAS Google Scholar
Kröncke, K.-D., Fehsel, K., Sommer, A., Rodriguez, M.-L. & Kolb-Bachofen, V. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol. Chem.376 , 179–185 (1995). Google Scholar
Yamada, K. et al. Preventive and therapeutic aspects of large dose nicotinamide injections on diabetes associated with insulitis: an observation in non-obese diabetic (NOD) mice. Diabetes31, 749– 753 (1982). ArticleCAS Google Scholar
Lazarus, S. & Shapiro, S. H. Influence of nicotinamide and pyridine nucleotides on streptozotocin and alloxan induced pancreatic B cell cytotoxicity. Diabetes22, 499– 506 (1973). ArticleCAS Google Scholar
Sestelli, P. et al. Structural requirements for inhibitors of poly(ADP-ribose)polymerase. J. Cancer Res. Clin. Oncol.116, 615– 622 (1990). Article Google Scholar
Wang, Z.-Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev.9, 509–520 (1995). ArticleCAS Google Scholar
Cardinal, J.W., Allan, D.J. & Cameron, D.P. Differential metabolite accumulation may be the cause of strain differences in sensitivity to streptozotocin-induced β cell death in inbred mice. Endocrinology139, 2885–2891 (1998). ArticleCAS Google Scholar
Leist, M., Single, B., Castoldi, A.F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med.185, 1481– 1486 (1997). ArticleCAS Google Scholar
Kallmann, B., Burkart, V., Krüncke, K.-D., Kolb-Bachofen, V. & Kolb, H. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci.51, 671– 678 (1992). ArticleCAS Google Scholar
Radons, J. et al. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem. Biophys. Res. Commun.199, 1270– 1277 (1994). ArticleCAS Google Scholar
Heller, B. et al. Inactivation or the poly(ADP-ribose)polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem.270, 11176–11180 ( 1995). ArticleCAS Google Scholar
Eliasson, M. J. et al. Poly(ADP-ribose)polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med.3, 1089–1095 (1997). ArticleCAS Google Scholar
Zhang, J., Dawson, V.L., Dawson, T.M. & Snyder, S. H. Nitric oxide activation of poly(ADP-ribose)synthetase in neurotoxicity. Science263, 687–689 ( 1994). ArticleCAS Google Scholar
Thiemermann, C., Bowes, J., Myint, F.P. & Vane, J. R. Inhibition of the activity of poly(ADP-ribose)synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. USA94, 679–683 (1997). ArticleCAS Google Scholar
Berger, N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res.101, 4–15 ( 1985). ArticleCAS Google Scholar
Eguchi, Y., Shimizu, S. & Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res.57, 1835 –1840 (1997). CASPubMed Google Scholar
Rosenthal, D. S. et al. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp. Cell Res.232, 313–321 (1997). ArticleCAS Google Scholar
Simbulan-Rosenthal, C.M., Rosenthal, D.S., Iyer, S., Boulares, A.H. & Smulson, M.E. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose)polymerase in the early stages of apoptosis. J. Biol. Chem.273, 13703– 13712 (1998). ArticleCAS Google Scholar
Wang, Z.-Q. et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev.11, 2347– 2358 (1997). ArticleCAS Google Scholar
Ménissier de Murcia, J. et al. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA94, 7303–7307 ( 1997). Article Google Scholar
Endres, M., Wang, Z.Q., Namura, S., Waeber, C. & Moskowitz, M.A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J. Cereb. Blood Flow Metab.17, 1143–1151 (1997). ArticleCAS Google Scholar
Eizirik, D.L., Sandler, S., Sener, A. & Malaisse, W.J. Defective catabolism of D-glucose and L-glutamine in mouse pancreatic islets maintained in culture after streptozotocin exposure. Endocrinol.123, 1001–1007 (1988). ArticleCAS Google Scholar
Rasschaert, J., Eizirik, D.L. & Malaisse, W.J. Long term in vitro effects of streptozotocin, interleukin-1, and high glucose concentration on the activity of mitochondrial dehydrogenases and the secretion of insulin in pancreatic islets. Endocrinol.130, 3522–3528 (1992). ArticleCAS Google Scholar
LeDoux, S.P., Hall, C.R., Forbes, P.M., Patton, N.J. & Wilson, G.L. Mechanisms of nicotinamide and thymidine protection from alloxan and streptozotocin toxicity. Diabetes37, 1015–1019 (1988). ArticleCAS Google Scholar
Delaney, C.A., Green, M.H.L., Lowe, J.E. & Green, I.C. Endogenous nitric oxide induced by interleukin-1b in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the 'comet' assay. FEBS Lett.333, 291– 295 (1993). ArticleCAS Google Scholar
Burkart, V. et al. Low dose streptozotocin-induced diabetes in mice: Reduced IL-2 production and modulation of streptozotocin induced hyperglycemia by IL-2. Int. J. Immunopharmac.14, 1037– 1044 (1992). ArticleCAS Google Scholar
Appels, B. et al. Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J. Immunol.142, 3803– 3808 (1989). CASPubMed Google Scholar