Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor (original) (raw)
References
Shinozaki, K. & Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol.7, 161–167 (1996). ArticleCASPubMed Google Scholar
Thomashow, M.F. in Arabidopsis. (eds Meyrowitz, E. & Somerville, C.) 807–834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994). Google Scholar
Shinozaki, K. & Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol.115, 327–334 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ingram, J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol.47, 377–403 ( 1996). ArticleCAS Google Scholar
Bray, E.A. Plant responses to water deficit. Trends Plant Sci.2, 48–54 (1997). Article Google Scholar
Holmberg, N. & Bulow, L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci.3, 61 –66 (1998). Article Google Scholar
Tarczynski, M. & Bohnert, H. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science259, 508–510 (1993). ArticleCASPubMed Google Scholar
KaviKishor, P.B., Hong, Z., Miao, G.-U., Hu, C.-A.H. & Verma, D.P.S. Overexpression of Δ ´-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol.108, 1387– 1394 (1995). Article Google Scholar
Hayashi, H., Mustardy, L., Deshnium, P., Ida, M. & Murata, N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J.12, 133–142 (1997). ArticleCASPubMed Google Scholar
Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., & Iba, K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol.105, 601–605 (1994). ArticleCASPubMedPubMed Central Google Scholar
Ishizaki-Nishizawa, O. et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol.14, 1003–1006 (1996). ArticleCASPubMed Google Scholar
Xu, D. et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol.110, 249–257 (1996). ArticleCASPubMedPubMed Central Google Scholar
McKersie, B.D., Bowley, S.R., Harjanto, E. & Leprince, O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol.111, 1177–1181 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet.236, 331–340 (1993). ArticleCASPubMed Google Scholar
Nordin, K., Heino, P. & Palva, E.T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol.16, 1061–1071 (1991). ArticleCASPubMed Google Scholar
Kurkela, S. & Borg-Franck, M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol.19, 689– 692 (1992). ArticleCASPubMed Google Scholar
Gilmour, S. J, Artus, N.N. & Thomashow, M.F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol.18, 13–21 ( 1992). ArticleCASPubMed Google Scholar
Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol.15, 1287 (1997). Google Scholar
Yamaguchi-Shinozaki, K. & Shinozaki, K. A novel _cis_-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell6, 251–264 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wang, H., Datla, R., Georges, F., Loewen, M. & Cutler, A.J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol. Biol.28, 605– 617 (1995). ArticleCASPubMed Google Scholar
Liu, Q. et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell10, 1391–1406 (1998). ArticleCASPubMed Google Scholar
Stockinger, E.J., Gilmour, S.J. & Thomashow, M.F. Arabidopsis thanliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the CrepeatlDRE, a _cis_-acting DNA regulatory element that stlmulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA94, 1035–1040 (1997). ArticleCASPubMedPubMed Central Google Scholar
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. & Thomashow, M.F. Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science280, 104–106 (1998). ArticleCASPubMed Google Scholar
Mituhara, I. et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol.37, 49–59 ( 1996). Article Google Scholar
Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris, Life Sci.316, 1194-1199 (1993). CAS Google Scholar
Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol.35, 225–231 (1994). CASPubMed Google Scholar
Yoshiba, Y. et al. Correlation between the induction of a gene for Δ'-pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J.7, 751– 760 (1995). ArticleCASPubMed Google Scholar
Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein. Biochem. Biophys. Res. Comm.196, 1214–1220 ( 1993). ArticleCASPubMed Google Scholar
Yamaguchi-Shinozaki, K. & Shinozaki, K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol. Gen. Genet. 238, 17– 25 (1993). CASPubMed Google Scholar
Yamaguchi-Shinozaki, K. & Shinozaki, K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol.101, 1119–1120 (1993). ArticleCASPubMedPubMed Central Google Scholar
Dure, L. II I et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol.12, 475– 486 (1989). ArticleCASPubMed Google Scholar
Ingram J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol.47, 377–403 ( 1996). ArticleCAS Google Scholar
Lin, C. & Thomashow, M.F. DNA sequence analysis of complementary DNA for cold-regulated Arabidopsis gene corl5 and characterization of the COR15 polypeptide. Plant Physiol.99, 519–525 (1992). ArticleCASPubMedPubMed Central Google Scholar
Artus, N.N. et al. 1996. Constitutive expression of the cold-regulated Aradidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA93, 13404–13409 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jiang, C., Iu, B. & Singh, J. Requirement of a CCGAC _cis_-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol.30, 679–684 (1996). ArticleCASPubMed Google Scholar
Ouellet, F., Vazquez-Tello, A. & Sarhan, F. 1998. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett.423, 324–328 ( 1998). ArticleCASPubMed Google Scholar