Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor (original) (raw)

References

  1. Shinozaki, K. & Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161–167 (1996).
    Article CAS PubMed Google Scholar
  2. Thomashow, M.F. in Arabidopsis. (eds Meyrowitz, E. & Somerville, C.) 807–834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).
    Google Scholar
  3. Shinozaki, K. & Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327–334 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  4. Ingram, J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403 ( 1996).
    Article CAS Google Scholar
  5. Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 2, 48–54 (1997).
    Article Google Scholar
  6. Holmberg, N. & Bulow, L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61 –66 (1998).
    Article Google Scholar
  7. Tarczynski, M. & Bohnert, H. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510 (1993).
    Article CAS PubMed Google Scholar
  8. KaviKishor, P.B., Hong, Z., Miao, G.-U., Hu, C.-A.H. & Verma, D.P.S. Overexpression of Δ ´-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387– 1394 (1995).
    Article Google Scholar
  9. Hayashi, H., Mustardy, L., Deshnium, P., Ida, M. & Murata, N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 12, 133–142 (1997).
    Article CAS PubMed Google Scholar
  10. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., & Iba, K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601–605 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  11. Ishizaki-Nishizawa, O. et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14, 1003–1006 (1996).
    Article CAS PubMed Google Scholar
  12. Xu, D. et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  13. McKersie, B.D., Bowley, S.R., Harjanto, E. & Leprince, O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111, 1177–1181 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  14. Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236, 331–340 (1993).
    Article CAS PubMed Google Scholar
  15. Nordin, K., Heino, P. & Palva, E.T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16, 1061–1071 (1991).
    Article CAS PubMed Google Scholar
  16. Kurkela, S. & Borg-Franck, M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19, 689– 692 (1992).
    Article CAS PubMed Google Scholar
  17. Gilmour, S. J, Artus, N.N. & Thomashow, M.F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13–21 ( 1992).
    Article CAS PubMed Google Scholar
  18. Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol. 15, 1287 (1997).
    Google Scholar
  19. Yamaguchi-Shinozaki, K. & Shinozaki, K. A novel _cis_-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  20. Wang, H., Datla, R., Georges, F., Loewen, M. & Cutler, A.J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol. Biol. 28, 605– 617 (1995).
    Article CAS PubMed Google Scholar
  21. Liu, Q. et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406 (1998).
    Article CAS PubMed Google Scholar
  22. Stockinger, E.J., Gilmour, S.J. & Thomashow, M.F. Arabidopsis thanliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the CrepeatlDRE, a _cis_-acting DNA regulatory element that stlmulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  23. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. & Thomashow, M.F. Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280, 104–106 (1998).
    Article CAS PubMed Google Scholar
  24. Mituhara, I. et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37, 49–59 ( 1996).
    Article Google Scholar
  25. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris, Life Sci. 316, 1194-1199 (1993).
    CAS Google Scholar
  26. Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35, 225–231 (1994).
    CAS PubMed Google Scholar
  27. Yoshiba, Y. et al. Correlation between the induction of a gene for Δ'-pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7, 751– 760 (1995).
    Article CAS PubMed Google Scholar
  28. Kiyosue, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein. Biochem. Biophys. Res. Comm. 196, 1214–1220 ( 1993).
    Article CAS PubMed Google Scholar
  29. Yamaguchi-Shinozaki, K. & Shinozaki, K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol. Gen. Genet. 238, 17– 25 (1993).
    CAS PubMed Google Scholar
  30. Yamaguchi-Shinozaki, K. & Shinozaki, K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol. 101, 1119–1120 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  31. Dure, L. II I et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12, 475– 486 (1989).
    Article CAS PubMed Google Scholar
  32. Ingram J. & Bartels, D. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403 ( 1996).
    Article CAS Google Scholar
  33. Lin, C. & Thomashow, M.F. DNA sequence analysis of complementary DNA for cold-regulated Arabidopsis gene corl5 and characterization of the COR15 polypeptide. Plant Physiol. 99, 519–525 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  34. Artus, N.N. et al. 1996. Constitutive expression of the cold-regulated Aradidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA 93, 13404–13409 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  35. Jiang, C., Iu, B. & Singh, J. Requirement of a CCGAC _cis_-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 30, 679–684 (1996).
    Article CAS PubMed Google Scholar
  36. Ouellet, F., Vazquez-Tello, A. & Sarhan, F. 1998. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett. 423, 324–328 ( 1998).
    Article CAS PubMed Google Scholar

Download references