Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin (original) (raw)

References

  1. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 ( 1993).
    Article CAS Google Scholar
  2. Ehlers, M. D., Mammen, A. L, Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 484–489 (1996).
    Article CAS Google Scholar
  3. Kirsch, J., Meyer, G. & Betz, H. Synaptic targeting of ionotropic neurotransmitter receptors. Mol. Cell. Neurosci. 8, 93–98 (1996).
    Article CAS Google Scholar
  4. Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5, 318– 323 (1995).
    Article CAS Google Scholar
  5. Kirsch, J. & Betz, H. Glycine receptor activation is required for receptor clustering in spinal neurons. Nature 392 , 717–720 (1998).
    Article CAS Google Scholar
  6. Lévi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335 –345 (1998).
    PubMed Google Scholar
  7. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).
    Article CAS Google Scholar
  8. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).
    Article CAS Google Scholar
  9. Sassoè-Pognetto, M. et al. Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol. 357, 1–14 (1995).
    Article Google Scholar
  10. Todd, A. J., Watt, C., Spike, R. C. & Sieghart, W. Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J. Neurosci. 16, 974–982 (1996).
    Article CAS Google Scholar
  11. Essrich, C., Lorez, M., Benson, J., Fritschy, J. M. & Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 ( 1998).
    Article CAS Google Scholar
  12. Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).
    Article CAS Google Scholar
  13. Stallmeyer, B. et al. The neurotransmitter-anchoring protein gephyrin reconstitutes molybdenum-cofactor biosynthesis in bacteria, plants and mammalian cells. Proc. Natl. Acad. Sci. USA 96, 1333– 1338 (1999).
    Article CAS Google Scholar
  14. Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266, 22242– 22245 (1991).
    CAS PubMed Google Scholar
  15. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148– 4156 (1995).
    Article CAS Google Scholar
  16. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).
    Article CAS Google Scholar
  17. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 ( 1995).
    Article CAS Google Scholar
  18. Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J. Neurochem. 72, 1323–1326 (1999).
    Article CAS Google Scholar
  19. Fields, S. & Song, O. K. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1988).
    Article Google Scholar
  20. Akagi, H. & Miledi, R. Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science 242, 270–272 ( 1988).
    Article CAS Google Scholar
  21. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the DBL oncogene product. J. Biol. Chem. 269, 62–65 (1994).
    CAS PubMed Google Scholar
  22. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216 –222 (1996).
    Article CAS Google Scholar
  23. Harlan, J. E., Hajduk, P., Sup Yoon, H. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol 4,5-bisphosphate. Nature 372, 375–379 (1994).
    Article Google Scholar
  24. Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).
    Article CAS Google Scholar
  25. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183– 192 (1998).
    Article CAS Google Scholar
  26. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA 81, 7224–7227 (1984).
    Article CAS Google Scholar
  27. Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci. 11, 740–744 ( 1999).
    Article CAS Google Scholar
  28. Hateboer, G. et al. BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J. 14, 3159– 3169 (1995).
    Article CAS Google Scholar
  29. Keino-Masu, K. et al. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).
    Article CAS Google Scholar
  30. Béchade, C., Colin, I., Kirsch, J., Betz, H. & Triller, A. Glycine receptor α subunit and gephyrin expression in cultured spinal neurons: a quantitative analysis. Eur. J. Neurosci. 8, 429–435 ( 1996).
    Article Google Scholar
  31. Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Comm. 243, 86– 89 (1998).
    Article CAS Google Scholar
  32. Sabatini, D. et al. RAFT1 signaling requires interaction with the clustering protein gephyrin. Science 284, 1161– 1164 (1999).
    Article CAS Google Scholar
  33. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348 (1993).
    Article CAS Google Scholar
  34. Kirsch, J. Assembly of signaling machinery at the postsynaptic membrane. Curr. Opin. Neurobiol. 9, 329–335 (1999).
    Article CAS Google Scholar
  35. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279 , 509–514 (1998).
    Article CAS Google Scholar
  36. Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997 ).
    Article CAS Google Scholar
  37. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).
    Article CAS Google Scholar
  38. Nobes, C. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62 (1995).
    Article CAS Google Scholar
  39. Chen, H.-J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic ras-GTPase activating protein (p135/SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).
    Article CAS Google Scholar
  40. Kim, J. H., Liao, D., Lau, L.-F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 ( 1998).
    Article CAS Google Scholar
  41. Brambilla, R. et al. A role for the ras-signalling pathway in synaptic transmission and longterm memory. Nature 390, 281– 286 (1997).
    Article CAS Google Scholar
  42. Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor densities. EMBO J. 13, 1318–1324 (1994).
    Article CAS Google Scholar
  43. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).
    Article CAS Google Scholar
  44. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).
    Article CAS Google Scholar
  45. Frohmann, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998– 9002 (1988).
    Article Google Scholar
  46. Kirsch, J. & Betz, H. Widespread expression of gephyrin, a putative receptor-tubulin linker protein, in rat brain. Brain Res. 621, 301–310 ( 1993).
    Article CAS Google Scholar
  47. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220 (1987).
    Article CAS Google Scholar
  48. Grenningloh, G. et al. Cloning and expression of the 58 kd β subunit of the inhibitory glycine receptor. Neuron 4, 963–970 (1990).
    Article CAS Google Scholar
  49. Kirsch, J., Malosio, M.-L., Wolters, I. & Betz, H. Distribution of gephyrin transcripts in the adult and developing rat brain. Eur. J. Neurosci. 5, 1109– 1117 (1993).
    Article CAS Google Scholar
  50. Heng, H. H. Q., Squire, J. & Tsui, L.-C. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513 (1992).
    Article CAS Google Scholar

Download references