Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin (original) (raw)
References
Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci.16, 347–368 ( 1993). ArticleCAS Google Scholar
Ehlers, M. D., Mammen, A. L, Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol.8, 484–489 (1996). ArticleCAS Google Scholar
Kirsch, J., Meyer, G. & Betz, H. Synaptic targeting of ionotropic neurotransmitter receptors. Mol. Cell. Neurosci.8, 93–98 (1996). ArticleCAS Google Scholar
Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol.5, 318– 323 (1995). ArticleCAS Google Scholar
Kirsch, J. & Betz, H. Glycine receptor activation is required for receptor clustering in spinal neurons. Nature392 , 717–720 (1998). ArticleCAS Google Scholar
Lévi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci.111, 335 –345 (1998). PubMed Google Scholar
Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature366, 745–748 ( 1993). ArticleCAS Google Scholar
Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science282, 1321–1324 (1998). ArticleCAS Google Scholar
Sassoè-Pognetto, M. et al. Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol.357, 1–14 (1995). Article Google Scholar
Todd, A. J., Watt, C., Spike, R. C. & Sieghart, W. Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J. Neurosci.16, 974–982 (1996). ArticleCAS Google Scholar
Essrich, C., Lorez, M., Benson, J., Fritschy, J. M. & Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci.1, 563–571 ( 1998). ArticleCAS Google Scholar
Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci.19, 9289–9297 (1999). ArticleCAS Google Scholar
Stallmeyer, B. et al. The neurotransmitter-anchoring protein gephyrin reconstitutes molybdenum-cofactor biosynthesis in bacteria, plants and mammalian cells. Proc. Natl. Acad. Sci. USA96, 1333– 1338 (1999). ArticleCAS Google Scholar
Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem.266, 22242– 22245 (1991). CASPubMed Google Scholar
Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci.15, 4148– 4156 (1995). ArticleCAS Google Scholar
Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci.6, 450–461 (1995). ArticleCAS Google Scholar
Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron15, 563–572 ( 1995). ArticleCAS Google Scholar
Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J. Neurochem.72, 1323–1326 (1999). ArticleCAS Google Scholar
Fields, S. & Song, O. K. A novel genetic system to detect protein–protein interactions. Nature340, 245–246 (1988). Article Google Scholar
Akagi, H. & Miledi, R. Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science242, 270–272 ( 1988). ArticleCAS Google Scholar
Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the DBL oncogene product. J. Biol. Chem.269, 62–65 (1994). CASPubMed Google Scholar
Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol.8, 216 –222 (1996). ArticleCAS Google Scholar
Harlan, J. E., Hajduk, P., Sup Yoon, H. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol 4,5-bisphosphate. Nature372, 375–379 (1994). Article Google Scholar
Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature372, 375–379 (1994). ArticleCAS Google Scholar
Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell1, 183– 192 (1998). ArticleCAS Google Scholar
Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA81, 7224–7227 (1984). ArticleCAS Google Scholar
Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci.11, 740–744 ( 1999). ArticleCAS Google Scholar
Hateboer, G. et al. BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J.14, 3159– 3169 (1995). ArticleCAS Google Scholar
Keino-Masu, K. et al. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell87, 175–185 (1996). ArticleCAS Google Scholar
Béchade, C., Colin, I., Kirsch, J., Betz, H. & Triller, A. Glycine receptor α subunit and gephyrin expression in cultured spinal neurons: a quantitative analysis. Eur. J. Neurosci.8, 429–435 ( 1996). Article Google Scholar
Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Comm.243, 86– 89 (1998). ArticleCAS Google Scholar
Sabatini, D. et al. RAFT1 signaling requires interaction with the clustering protein gephyrin. Science284, 1161– 1164 (1999). ArticleCAS Google Scholar
Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci.18, 343–348 (1993). ArticleCAS Google Scholar
Kirsch, J. Assembly of signaling machinery at the postsynaptic membrane. Curr. Opin. Neurobiol.9, 329–335 (1999). ArticleCAS Google Scholar
Hall, A. Rho GTPases and the actin cytoskeleton. Science279 , 509–514 (1998). ArticleCAS Google Scholar
Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol.9, 86–92 (1997 ). ArticleCAS Google Scholar
Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell81, 1147–1157 (1995). ArticleCAS Google Scholar
Nobes, C. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell81, 53–62 (1995). ArticleCAS Google Scholar
Chen, H.-J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic ras-GTPase activating protein (p135/SynGAP) inhibited by CaM kinase II. Neuron20, 895–904 (1998). ArticleCAS Google Scholar
Kim, J. H., Liao, D., Lau, L.-F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron20, 683–691 ( 1998). ArticleCAS Google Scholar
Brambilla, R. et al. A role for the ras-signalling pathway in synaptic transmission and longterm memory. Nature390, 281– 286 (1997). ArticleCAS Google Scholar
Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor densities. EMBO J.13, 1318–1324 (1994). ArticleCAS Google Scholar
Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75, 805–816 (1993). ArticleCAS Google Scholar
Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron8, 1161–1170 (1992). ArticleCAS Google Scholar
Frohmann, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA85, 8998– 9002 (1988). Article Google Scholar
Kirsch, J. & Betz, H. Widespread expression of gephyrin, a putative receptor-tubulin linker protein, in rat brain. Brain Res.621, 301–310 ( 1993). ArticleCAS Google Scholar
Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature328, 215–220 (1987). ArticleCAS Google Scholar
Grenningloh, G. et al. Cloning and expression of the 58 kd β subunit of the inhibitory glycine receptor. Neuron4, 963–970 (1990). ArticleCAS Google Scholar
Kirsch, J., Malosio, M.-L., Wolters, I. & Betz, H. Distribution of gephyrin transcripts in the adult and developing rat brain. Eur. J. Neurosci.5, 1109– 1117 (1993). ArticleCAS Google Scholar
Heng, H. H. Q., Squire, J. & Tsui, L.-C. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA89, 9509–9513 (1992). ArticleCAS Google Scholar