Nuclear Notch1 signaling and the regulation of dendritic development (original) (raw)

References

  1. Greenwald, I. & Rubin, G. M. Making a difference: the role of cell–cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–281 (1992).
    Article CAS Google Scholar
  2. Ghysen, A., Dambly-Chaudiere, C., Jan, L. Y. & Jan, Y. N. Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev. 7, 723–733 ( 1993).
    Article CAS Google Scholar
  3. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268 , 225–232 (1995).
    Article CAS Google Scholar
  4. Kimble, J. & Simpson, P. The lin-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol. 13, 333–361 (1997).
    Article CAS Google Scholar
  5. Greenwald, I. Lin-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 ( 1998).
    Article CAS Google Scholar
  6. Pan, D. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271 –280 (1997).
    Article CAS Google Scholar
  7. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).
    Article CAS Google Scholar
  8. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112 (1998).
    Article CAS Google Scholar
  9. Kidd, S., Lieber, T. & Young, M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 ( 1998).
    Article CAS Google Scholar
  10. Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in notch receptor signaling. Cell 79, 273–282 ( 1994).
    Article CAS Google Scholar
  11. Lecourtois, M. & Schweisguth, F. The neurogenic Suppressor of Hairless DNA-binding protein mediates the transcriptional activation of the Enhancer of split Complex genes triggered by Notch signaling. Genes Dev. 9, 2598–2608 (1995).
    Article CAS Google Scholar
  12. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 ( 1995).
    Article CAS Google Scholar
  13. Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr. Biol. 5, 1416–1423 (1995).
    Article CAS Google Scholar
  14. Hsieh, J. J. et al. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol. 16, 952–959 (1996).
    Article CAS Google Scholar
  15. Lu, F. M. & Lux, S. E. Constitutively active human Notch1 binds to the transcription factor CBF1 and stimulates transcription through a promoter containing a CBF1–responsive element. Proc. Natl. Acad. Sci. USA 93, 5663–5667 (1996).
    Article CAS Google Scholar
  16. Kopan, R., Schroeter, E. H., Weintraub, H. & Nye, J. S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA 93, 1683–1688 ( 1996).
    Article CAS Google Scholar
  17. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649– 660 (1998).
    Article CAS Google Scholar
  18. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).
    Article CAS Google Scholar
  19. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr. Biol. 8, 771– 774 (1998).
    Article CAS Google Scholar
  20. Coffman, C., Harris, W. & Kintner, C. Xotch, the Xenopus homolog of Drosophila notch. Science 249, 1438– 1441 (1990).
    Article CAS Google Scholar
  21. Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659– 671 (1993).
    Article CAS Google Scholar
  22. Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. & Kintner, C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766 ( 1995).
    Article CAS Google Scholar
  23. Dorsky, R. I., Rapaport, D. H. & Harris, W. A. Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14, 487– 496 (1995).
    Article CAS Google Scholar
  24. Austin, C. P., Feldman, D. E., Ida, J. A. Jr. & Cepko, C. L. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121 , 3637–3650 (1995).
    CAS PubMed Google Scholar
  25. Weinmaster, G., Roberts, V. J. & Lemke, G. A homolog of Drosophila Notch expressed during mammalian development. Development 113, 199–205 (1991).
    CAS PubMed Google Scholar
  26. del Amo, F. F. et al. Expression pattern of Motch, a mouse homologue of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115, 737– 744 (1992).
    CAS PubMed Google Scholar
  27. Reaume, A. G., Conlon, R. A., Zirngibl, R., Yamaguchi, T. P. & Rossant, J. Expression analysis of a Notch homologue in the mouse embryo. Dev. Biol. 154, 377 –387 (1992).
    Article CAS Google Scholar
  28. Weinmaster, G., Roberts, V. J. & Lemke, G. Notch2: a second mammalian Notch gene. Development 116, 931–941 ( 1992).
    CAS PubMed Google Scholar
  29. Lardelli, M., Dahlstrand, J. & Lendahl, U. The novel Notch homologue mouse Notch3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev. 46, 123–136 (1994).
    Article CAS Google Scholar
  30. Lindsell, C. E., Boulter, J., diSibio, G., Gossler, A. & Weinmaster, G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol. Cell. Neurosci. 8, 14– 27 (1996).
    Article CAS Google Scholar
  31. Bettenhausen, B., de Angelis, M. H., Simon, D., Guenet, J. L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of _Dll_1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).
    CAS PubMed Google Scholar
  32. Lindsell, C. E., Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).
    Article CAS Google Scholar
  33. Shawber, C., Boulter, J., Lindsell, C. E. & Weinmaster, G. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).
    Article CAS Google Scholar
  34. Swiatek, P. J., Lindsell, C. E., del Amo, F. F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707– 719 (1994).
    Article CAS Google Scholar
  35. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533– 1545 (1995).
    CAS PubMed Google Scholar
  36. Lardelli, M., Williams, R., Mitsiadis, T. & Lendahl, U. Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mech. Dev. 59, 177–190 (1996).
    Article CAS Google Scholar
  37. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch 1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).
    Article CAS Google Scholar
  38. Gonatas, J. O., Gonatas, M. K., Stieber, A. & Fleischer, B. Isolation and characterization of an enriched Golgi fraction from neurons of developing rat brains. J. Neurochem. 45, 497–507 (1985).
    Article CAS Google Scholar
  39. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).
    Article CAS Google Scholar
  40. Schmechel, D. E., Brightman, M. W. & Marangos, P. J. Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 190, 195–214 (1980).
    Article CAS Google Scholar
  41. Forss-Petter, S. et al. Transgenic mice expressing β-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5, 187–197 ( 1990).
    Article CAS Google Scholar
  42. Shawber, C. et al. Notch signaling inhibits muscle cell differentiation through a CBF1–independent pathway. Development 122, 3765–3773 (1996).
    CAS PubMed Google Scholar
  43. Qi, H. et al. Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science 283, 91–94 (1999).
    Article CAS Google Scholar
  44. Berezovska, O. et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93, 433– 439 (1999).
    Article CAS Google Scholar
  45. Sestan, N., Artavanis-Tsakonas, A. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286, 741–746 (1999).
    Article CAS Google Scholar
  46. Giniger, E., Jan, L. Y. & Jan, Y.-N. Specifying the path of the intersegmental nerve of the Drosophila embryo: a role for Delta and Notch. Development 117, 431–440 ( 1993).
    CAS PubMed Google Scholar
  47. Giniger, E. A role for Abl in Notch signaling. Neuron 20, 667–681 (1998).
    Article CAS Google Scholar
  48. Fambrough, D., Pan, D., Rubin, G. M. & Goodman, C. S. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc. Natl. Acad. Sci. USA 93, 13233–13238 (1996).
    Article CAS Google Scholar
  49. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 ( 1997).
    Article CAS Google Scholar
  50. Thormodsson, F. R., Redmond, L. & Hockfield, S. Identification of nuclear proteins that are developmentally regulated in embryonic rat brain. J. Neurochem. 64, 1919–1927 (1995).
    Article CAS Google Scholar

Download references