Dynactin increases the processivity of the cytoplasmic dynein motor (original) (raw)
References
Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature368, 113–119 (1994). ArticleCAS Google Scholar
Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature393, 711–714 (1998). ArticleCAS Google Scholar
Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature342, 154–158 (1989). ArticleCAS Google Scholar
Block, S. M., Goldstein, L. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature348, 348–352 (1990). ArticleCAS Google Scholar
Hackney, D. D. The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol.58, 731–750 (1996). ArticleCAS Google Scholar
Karki, S. & Holzbaur, E. L. F. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol.11, 45–53 (1999). ArticleCAS Google Scholar
Schroer, T. A. Structure and function of dynactin. Semin. Cell Dev. Biol.7, 321–328 (1996). ArticleCAS Google Scholar
Schafer, D. A., Gill, S. R., Cooper, J. A., Heuser, J. E. & Schroer, T. A. Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles f-actin. J. Cell Biol.126, 403–412 (1994). ArticleCAS Google Scholar
Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. F. Centractin (Arp1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol.135, 1815–1829 (1996). ArticleCAS Google Scholar
Eckley, D. M. et al. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the Arp1 minifilament pointed end. J. Cell Biol.147, 307–319 (1999). ArticleCAS Google Scholar
Karki, S. & Holzbaur, E. L. F. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem.270, 28806–28811 (1995). ArticleCAS Google Scholar
Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol.131, 1507–1516 (1995). ArticleCAS Google Scholar
Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA92, 1634–1638 (1995). ArticleCAS Google Scholar
Rickard, J. E. & Kreis, T. E. CLIPs for organelle-microtubule interactions. Trends Cell Biol.6, 178–183 (1996). ArticleCAS Google Scholar
Gill, S. R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol.115, 1639–1650 (1991). ArticleCAS Google Scholar
Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at fibroblast centrosomes. J. Cell Biol.147, 321–334 (1999). ArticleCAS Google Scholar
Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science271, 1539–1544 (1996). ArticleCAS Google Scholar
Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol.107, 1001–1009 (1988). ArticleCAS Google Scholar
Shimizu, T., Toyoshima, Y. Y., Edamatsu, M. & Vale, R. D. Comparison of the motile and enzymatic properties of two microtubule minus-end-directed motors, ncd and cytoplasmic dynein. Biochemistry34, 1575–1582 (1995). ArticleCAS Google Scholar
Holzbaur, E. L. F. & Johnson, K. A. Microtubules accelerate ADP release by dynein. Biochemistry28, 7010–7016 (1989). ArticleCAS Google Scholar
Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995). ArticleCAS Google Scholar
Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science283, 1152–1157 (1999). ArticleCAS Google Scholar
Takada, S. & Kamiya, R. Functional reconstitution of Chlamydomonas outer dynein arms from α-β and γ subunits: requirement of a third factor. J Cell Biol.126, 737–745 (1994). ArticleCAS Google Scholar
Huang, C. F., Chang, C. B., Huang, C. & Farrell, J. E. Jr M phase phosphorylation of cytoplasmic dynein intermediate chain and p150Glued. J. Biol. Chem.274, 14262–14269 (1999). ArticleCAS Google Scholar
Farshori, P. & Holzbaur, E. L. F. Dynactin phosphorylation is modulated in response to cellular effectors. Biochem. Biophys. Res. Commun.232, 810–816 (1997). ArticleCAS Google Scholar
Niclas, J., Allan, V. J. & Vale, R. D. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol.133, 585–593 (1996). ArticleCAS Google Scholar
Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol.115, 1309–1318 (1991). ArticleCAS Google Scholar
Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol.298, 171–184 (1998). ArticleCAS Google Scholar
Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol.85, 409–416 (1982). ArticleCAS Google Scholar
Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli: purification and kinetic characterization. J. Biol. Chem.269, 16493–16501 (1994). CASPubMed Google Scholar
Schnapp, B. J. Viewing single microtubules by video light microscopy. Methods Enzymol.134, 561–573 (1986). ArticleCAS Google Scholar
Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature400, 586–590 (1999). ArticleCAS Google Scholar
Vallee, R. B., Wall, J. S., Paschal, B. M. & Shpetner, H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature332, 561–563 (1988). ArticleCAS Google Scholar
Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci.93, 19–28 (1989). CASPubMed Google Scholar