Dynactin increases the processivity of the cytoplasmic dynein motor (original) (raw)

References

  1. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).
    Article CAS Google Scholar
  2. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998).
    Article CAS Google Scholar
  3. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).
    Article CAS Google Scholar
  4. Block, S. M., Goldstein, L. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).
    Article CAS Google Scholar
  5. Hackney, D. D. The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol. 58, 731–750 (1996).
    Article CAS Google Scholar
  6. Allan, V. Motor proteins: a dynamic duo. Curr. Biol. 6, 630–633 (1996).
    Article CAS Google Scholar
  7. Karki, S. & Holzbaur, E. L. F. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).
    Article CAS Google Scholar
  8. Schroer, T. A. Structure and function of dynactin. Semin. Cell Dev. Biol. 7, 321–328 (1996).
    Article CAS Google Scholar
  9. Schafer, D. A., Gill, S. R., Cooper, J. A., Heuser, J. E. & Schroer, T. A. Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles f-actin. J. Cell Biol. 126, 403–412 (1994).
    Article CAS Google Scholar
  10. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. F. Centractin (Arp1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).
    Article CAS Google Scholar
  11. Eckley, D. M. et al. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the Arp1 minifilament pointed end. J. Cell Biol. 147, 307–319 (1999).
    Article CAS Google Scholar
  12. Karki, S. & Holzbaur, E. L. F. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 270, 28806–28811 (1995).
    Article CAS Google Scholar
  13. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).
    Article CAS Google Scholar
  14. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).
    Article CAS Google Scholar
  15. Rickard, J. E. & Kreis, T. E. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 6, 178–183 (1996).
    Article CAS Google Scholar
  16. Gill, S. R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115, 1639–1650 (1991).
    Article CAS Google Scholar
  17. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at fibroblast centrosomes. J. Cell Biol. 147, 321–334 (1999).
    Article CAS Google Scholar
  18. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).
    Article CAS Google Scholar
  19. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol. 107, 1001–1009 (1988).
    Article CAS Google Scholar
  20. Shimizu, T., Toyoshima, Y. Y., Edamatsu, M. & Vale, R. D. Comparison of the motile and enzymatic properties of two microtubule minus-end-directed motors, ncd and cytoplasmic dynein. Biochemistry 34, 1575–1582 (1995).
    Article CAS Google Scholar
  21. Holzbaur, E. L. F. & Johnson, K. A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).
    Article CAS Google Scholar
  22. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).
    Article CAS Google Scholar
  23. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).
    Article CAS Google Scholar
  24. Takada, S. & Kamiya, R. Functional reconstitution of Chlamydomonas outer dynein arms from α-β and γ subunits: requirement of a third factor. J Cell Biol. 126, 737–745 (1994).
    Article CAS Google Scholar
  25. Huang, C. F., Chang, C. B., Huang, C. & Farrell, J. E. Jr M phase phosphorylation of cytoplasmic dynein intermediate chain and p150Glued. J. Biol. Chem. 274, 14262–14269 (1999).
    Article CAS Google Scholar
  26. Farshori, P. & Holzbaur, E. L. F. Dynactin phosphorylation is modulated in response to cellular effectors. Biochem. Biophys. Res. Commun. 232, 810–816 (1997).
    Article CAS Google Scholar
  27. Niclas, J., Allan, V. J. & Vale, R. D. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol. 133, 585–593 (1996).
    Article CAS Google Scholar
  28. Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991).
    Article CAS Google Scholar
  29. Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998).
    Article CAS Google Scholar
  30. Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 409–416 (1982).
    Article CAS Google Scholar
  31. Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli: purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).
    CAS PubMed Google Scholar
  32. Schnapp, B. J. Viewing single microtubules by video light microscopy. Methods Enzymol. 134, 561–573 (1986).
    Article CAS Google Scholar
  33. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999).
    Article CAS Google Scholar
  34. Vallee, R. B., Wall, J. S., Paschal, B. M. & Shpetner, H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature 332, 561–563 (1988).
    Article CAS Google Scholar
  35. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).
    CAS PubMed Google Scholar

Download references